KEMAMPUAN GEL EKSTRAK BIJI KOPI ROBUSTA (Coffea canephora) DALAM MENURUNKAN TRAP PADA TIKUS MODEL PERIODONTITIS YANG DIINDUKSI KOMBINASI LPS P. gingivalis DAN WIRE NITI

  • Dessy Rachmawati Departemen Biomedik, Fakultas Kedokteran Gigi, Universitas Jember
    (ID)
  • Sari Setyaningsih Departemen Biomedik, Fakultas Kedokteran Gigi, Universitas Jember
    (ID)
  • Herniyati Departemen Ortodonsia, Fakultas Kedokteran Gigi, Universitas Jember
    (ID)
  • Tanzilal Azizir Rahmah Program Studi Pendidikan Dokter Gigi, Fakultas Kedokteran Gigi, Universitas Jember
    (ID)
Keywords: Periodontitis, TRAP, NiTi Wire, Robusta coffee bean

Abstract

Periodontitis is an inflammatory disease of the tooth supporting tissues caused by pathogenic microorganisms in dental plaque. P. gingivalis as the main etiology of periodontitis has a virulence factor in the form of lipopolysaccharide (LPS). The use of NiTi wires in initial orthodontic treatment can exacerbate periodontitis. Robusta coffee beans contain active compounds such as chlorogenic acid, caffeic acid, ferulic acid and caffeine as anti-inflammatories and antioxidants. This study aims to analyze the ability of robusta coffee bean extract gel to reduce TRAP in a rat model of periodontitis induced by the combination of LPS P. gingivalis and NiTi wire. The 28 male wistar rats were classified into 7 groups of normal (K), injected with LPS (P1), NiTi wire (P2), combination of LPS and NiTi wire (P3), injected with LPS and 500 mg/ml robusta coffee bean gel (P4), NiTi wire and 500 mg/ml robusta coffee bean gel (P5), combination of LPS and NiTi wire with 500 mg/ml robusta coffee bean gel (P6). The rats were decapitated, and then the tissue was stained with HE and IHC. The expression of TRAP was counted in the area around alveolar bone of the lower-left M1. Data were analyzed using SPSS software by going through several test, such as Saphiro-Wilk, Levene-Test, Kruskal-Wallis, and followed by Mann-Whitney. The results of TRAP expression showed a significant decreased (p<0,05) on combination of LPS and NiTi wire with robusta coffee bean extract gel. Robusta coffee bean extract gel was able to reduce TRAP expression on periodontitis model rats induced by the combination of LPS P. gingivalis and NiTi wire.

Downloads

Download data is not yet available.

References

Baddam, H., Vivekanandan, G., Kondreddy, K., Peddi, S., Chitnis, P. P., Singh, Y. P., & Tiwar, R. (2021). Evaluation of Gingival Crevicular Fluid and Serum Tartrate-resistant Acid Phosphatase Levels in Subjects with Clinically Healthy Periodontium and Chronic Periodontitis-A Clinico-biochemical Study. Journal of pharmacy & bioallied sciences, 13(Suppl 2), S1275–S1279.

Bagdas, D., Gul, Z., Meade, J. A., Cam, B., Cinkilic, N., & Gurun, M. S. 2020. Pharmacologic overview of chlorogenic acid and its metabolites in chronic pain and inflammation. Current Neuropharmacology, 18(3), 216-228.

Cao, Y. J., Zhang, Y. M., Qi, J. P., Liu, R., Zhang, H., & He, L. C. 2015. Ferulic Acid Inhibits H2O2-Induced Oxidative Stress and Inflammation in Rat Vascular Smooth Muscle Cells Via Inhibition of the NADPH Oxidase and NF-κB Pathway. International immunopharmacology, 28(2), 1018-1025.

Chen, Y., Sun, J., Dou, C., Li, N., Kang, F., Wang, Y., & Dong, S. 2016. Alliin Attenuated RANKL-Induced Osteoclastogenesis by Scavenging Reactive Oxygen Species Through Inhibiting Nox1. International journal of molecular sciences, 17(9), 1516

Ciesielska, A., Matyjek, M., & Kwiatkowska, K. 2021. TLR4 and CD14 Trafficking and Its Influence on LPS-induced Pro-Inflammatory Signaling. Cellular and molecular life sciences, 78, 1233-1261.

Dăguci, L., Dăguci, C., Dumitrescu, C. I., Farcaşiu, C., Tărlungeanu, D. I., Bătăiosu, M., & Andrei, O. C. 2020. Periodontal Clinico-Morphological Changes in Patients Wearing Old Nickel–Chromium and Copper Alloys Bridges. Romanian Journal of Morphology and Embryology, 61(2), 449.

Doss, H. M., Samarpita, S., Ganesan, R., & Rasool, M. 2018. Ferulic acid, a Dietary Polyphenol Suppresses Osteoclast Differentiation and Bone Erosion Via the Inhibition of RANKL Dependent NF-κB Signalling Pathway. Life sciences, 207, 284-295.

Epsley, S., Tadros, S., Farid, A., Kargilis, D., Mehta, S., & Rajapakse, C. S. 2021. The Effect of Inflammation on Bone. Frontiers in physiology, 11, 1695.

Ekeuku, S. O., Pang, K. L., & Chin, K. Y. 2021. Effects of Caffeic Acid and Its Derivatives on Bone: A Systematic Review. Drug design, development and therapy, 259-275.

Febriani, M., & Rachmawati, E. 2021. Corrosion Inhibition Effect of Starfruit Leaf Extract (Averrhoa bilimbi L.) on Stainless Steel Orthodontic Wire. Journal of Advanced Medical and Dental Sciences Research, 9(3), 4-7.

Habar, E. H., & Tatengkeng, F. 2020. The Difference of Corrosion Resistance Between NiTi Archwires and NiTi with Additional Cooper Archwires in Artificial Saliva. Journal of Dentomaxillofacial Science, 5(2), 120-3.

Hall, S., Desbrow, B., Anoopkumar-Dukie, S., Davey, A. K., Arora, D., McDermott, C., & Grant, G. D. 2015. A Review of The Bioactivity of Coffee, Caffeine and Key Coffee Constituents on Inflammatory Responses Linked to Depression. Food Research International, 76, 626-636.

How, K. Y., Song, K. P., & Chan, K. G. 2016. Porphyromonas gingivalis: an Overview of Periodontopathic Pathogen Below the Gum Line. Frontiers in microbiology, 7, 53.

Iantomasi, T., Palmini, G., Romagnoli, C., Donati, S., Miglietta, F., Aurilia, C., & Brandi, M. L. 2022. Dietary Polyphenols and Osteoporosis: Molecular Mechanisms Involved. Int J Bone Frag, 2(3), 97-101.

Jeszka-Skowron, M., Sentkowska, A., Pyrzyńska, K., & De Peña, M. P. 2016. Chlorogenic Acids, Caffeine Content and Antioxidant Properties of Green Coffee Extracts: Influence of Green Coffee Bean Preparation. European Food Research and Technology, 242, 1403-1409.

Kim, H., Kim, C., Kook, K. E., Yanti, Choi, S., Kang, W., & Hwang, J. K. 2018. Inhibitory Effects of Standardized Boesenbergia Pandurata Extract and Its Active Compound Panduratin a on Lipopolysaccharide-Induced Periodontal Inflammation and Alveolar Bone Loss in Rats. Journal of medicinal food, 21(10), 961-970.

Kwak, S. C., Lee, C., Kim, J. Y., Oh, H. M., So, H. S., Lee, M. S., & Oh, J. 2013. Chlorogenic Acid Inhibits Osteoclast Differentiation and Bone Resorption by Down-Regulation of Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Nuclear Factor of Activated T Cells C1 Expression. Biological and Pharmaceutical Bulletin, 36(11), 1779-1786.

Kwon, T., Lamster, I. B., & Levin, L. 2021. Current concepts in the management of periodontitis. International dental journal, 71(6), 462-476.

Lim, G., Janu, U., Chiou, L. L., Gandhi, K. K., Palomo, L., & John, V. 2020. Periodontal Health and Systemic Conditions. Dentistry Journal, 8(4), 130.

Lu, H., Tian, Z., Cui, Y., Liu, Z., & Ma, X. 2020. Chlorogenic Acid: A Comprehensive Review of the Dietary Sources, Processing Effects, Bioavailability, Beneficial Properties, Mechanisms of Action, and Future Directions. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3130-3158

Lubis, H. F., & Purba, Y. A. 2021. Release Of Nickel Ion and Surface Microstructure of Niti Archwire After Immersion in Tomato and Orange Juice. In IOP Conference Series: Earth and Environmental Science (Vol. 912, No. 1, p. 012017). IOP Publishing.

Mendes, C. L., de Assis, P., Annibal, H., de Oliveira, L. J. R., de Albuquerque, M. S., de Lima Soares, M., & Braz, R. 2020. Metronidazole and Amoxicillin Association in Aggressive Periodontitis: A systematic review and meta-analysis. The Saudi Dental Journal, 32(6), 269-275.

Mira-Pascual, L. 2019. Role of Tartrate-Resistant Acid Phosphatase in Bone Remodeling (Doctoral dissertation, Karolinska Institutet (Sweden)).

Nishida, Y., Shimada, K., Horibe, K., Seki, K., Murai, Y., Sogawa, C., & Sogawa, N. 2023. Preventive Effects of Chlorogenic Acid on Alveolar Bone Loss in Ligature-Induced Periodontitis in Mice. Applied Sciences, 13(7), 4129.

Nugraha, A. P., Ardani, I. G. A. W., Sitalaksmi, R. M., Ramadhani, N. F., Rachmayanti, D., Kumala, D., & Luthfi, M. 2022. Anti–Peri-implantitis Bacteria’s Ability of Robusta Green Coffee Bean (Coffea Canephora) Ethanol Extract: An in Silico and in Vitro Study. European Journal of Dentistry.

Oblak, A., Pohar, J., & Jerala, R. 2015. MD-2 Determinants of Nickel and Cobalt-Mediated Activation of Human TLR4. PloS one, 10(3), e0120583.

Omi, M., & Mishina, Y. 2020. Role of Osteoclasts in Oral Homeostasis and Jawbone Diseases. Oral science international, 18(1), 14-27.

Peana, M., Zdyb, K., Medici, S., Pelucelli, A., Simula, G., Gumienna-Kontecka, E., & Zoroddu, M. A. 2017. Ni (II) Interaction with a Peptide Model of The Human TLR4 Ectodomain. Journal of Trace Elements in Medicine and Biology, 44, 151-160.

Rachmawati, D., von Blomberg, B. M. E., Kleverlaan, C. J., Scheper, R. J., & van Hoogstraten, I. M. 2017. Immunostimulatory Capacity of Dental Casting Alloys on Endotoxin Responsiveness. The Journal of Prosthetic Dentistry, 117(5), 677-684.

Ramanauskaite, E., & Machiulskiene, V. 2020. Antiseptics as Adjuncts to Scaling and Root Planing in The Treatment of Periodontitis: A Systematic Literature Review. BMC Oral Health, 20(1), 1-19.

Ren, J., Fok, M. R., Zhang, Y., Han, B., & Lin, Y. 2023. The Role of Non-Steroidal Anti-Inflammatory Drugs as Adjuncts to Periodontal Treatment and in Periodontal Regeneration. Journal of Translational Medicine, 21(1), 149.

Salinas-Muñoz, M., Garrido-Flores, M., Baeza, M., Huamán-Chipana, P., García-Sesnich, J., Bologna, R., & Hernández, M. 2017. Bone Resorptive Activity in Symptomatic and Asymptomatic Apical Lesions of Endodontic Origin. Clinical oral investigations, 21, 2613-2618.

Sandra, F., Rizal, M. I., Dewi, N. M., & Kukita, T. 2022. Caffeic Acid Inhibits Swelling, Bone Loss, and Osteoclastogenesis in Adjuvant-induced Arthritis Rats. The Indonesian Biomedical Journal, 14(3), 276-81.

Sim, H. Y., Kim, H. S., Jung, D. U., Lee, H., Lee, J. W., Han, K., & Yun, K. I. 2017. Association Between Orthodontic Treatment and Periodontal Diseases: Results from a National Survey. The Angle Orthodontist, 87(5), 651-657.

Srivastava, A. K., Snapper, D. M., Zheng, J., Yildrim, B. S., Srivastava, S., & Wood, S. C. 2022. Examining The Role of Nickel and Niti Nanoparticles Promoting Inflammation and Angiogenesis. Journal of Immunotoxicology, 19(1), 61-73.

Susanto, A., Rusminah, N., & Pertiwi, Y. P. 2023. Subgingival Chlorhexidine Irrigation for Scaling and Root Planing Adjunctive Therapy in Chronic Periodontitis: a systematic review. Medical Journal of Indonesia.

Swastini, I. G. A. A. P., Mahadewa, T. G. B., & Widyadharma, I. P. E. 2019. Alveolar Bone Osteoclast Profile in The Periodontitis Wistar Rats Model with The Snail Slime (Achatina fulica) application. Open access Macedonian journal of medical sciences, 7(10), 1680.

Usui, M., Onizuka, S., Sato, T., Kokabu, S., Ariyoshi, W., & Nakashima, K. 2021. Mechanism of Alveolar Bone Destruction in Periodontitis. Periodontal Bacteria and Inflammation. Japanese Dental Science Review, 57, 201-208.

Yu, Y., Zhao, S., Gu, D., Zhu, B., Liu, H., Wu, W., & Miao, L. 2022. Cerium Oxide Nanozyme Attenuates Periodontal Bone Destruction by Inhibiting The ROS–NFκB Pathway. Nanoscale, 14(7), 2628-2637.

Zhang, J., Yu, C., Zhang, X., Chen, H., Dong, J., Lu, W., & Zhou, W. (2018). Porphyromonas gingivalis Lipopolysaccharide Induces Cognitive Dysfunction, Mediated by Neuronal Inflammation Via Activation of The TLR4 Signaling Pathway in C57BL/6 mice. Journal of neuroinflammation, 15(1), 1-14.

Published
2025-02-04
Abstract viewed = 30 times