Klasifikasi Penderita Penyakit Anemia dengan Metode NBC menggunakan R Programming
Abstract
Era data digital menghasilkan data yang sangat besar. Menggali informasi yang termuat dalam data yang demikian sangat sulit jika dilakukan secara manual. Perkembangan aplikasi pengolahan data yang bersifat opensourcei sangat membantu setiap analis data dalam melakukan pekerjaannya. R Programming merupakan salah satu aplikasi yang dikembangkan dan penggunaannya sangat luas. Pada artikel ini akan membahas bagaimana memodelkan dataset penderita penyakit anemia yang dimaksudkan untuk memahami tingkat keakuratan diagnosis bahwa seseorang mengidap penyakit anemia atau tidak yang didasarkan pada ciri-ciri sebagaimana dimaksukan pada dataset. Hasilnya menunjukkan bahwa tingkat keakuratan model adalah 99%
References
Bradley, E. (1968). Multiple Classification Arbitrary Experimental Analysis for Arrangements. 10(1), 13–27.
Cao, G., Wang, Y., Wu, Y., Jing, W., Liu, J., & Liu, M. (2022). Prevalence of anemia among people living with HIV: A systematic review and meta-analysis. EClinicalMedicine, 44. https://doi.org/10.1016/j.eclinm.2022.101283
Chaparro, C. M., & Suchdev, P. S. (2019). Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. In Annals of the New York Academy of Sciences (Vol. 1450, Issue 1). https://doi.org/10.1111/nyas.14092
Chhikara, R. S., Register, D. T., & Company, L. E. (1979). Classification Method for Partitioning of a Large Multidimensional Mixed Data Set. 2(4).
Classification, C. (1964). Notes Cross Classification. 6(3).
Cox, D. R. (1960). Serial Sampling Acceptance Schemes Derived From Bayes’s Theorem. Technometrics, 2(3), 353–360. https://doi.org/10.1080/00401706.1960.10489902
Currie, A. R., Cockerill, D., Diez-Padrisa, M., Haining, H., Henriquez, F. L., & Quinn, B. (2022). Anemia in salmon aquaculture: Scotland as a case study. In Aquaculture (Vol. 546). https://doi.org/10.1016/j.aquaculture.2021.737313
Diggle, P., & Lophaven, S. (2006). Bayesian Geostatistical Design. Scandinavian Journal of Statistics, 33(1), 53–64. https://doi.org/10.1111/j.1467-9469.2005.00469.x
Donnellan, E., Aslan, S., Fastrich, G. M., & Murayama, K. (2022). How Are Curiosity and Interest Different? Naïve Bayes Classification of People’s Beliefs. In Educational Psychology Review (Vol. 34, Issue 1). https://doi.org/10.1007/s10648-021-09622-9
Draper, N. (1971). Bayesian Estimation of the Binomial Parameter. 13(3), 667–673.
Dunn, J. (1971). Some Expected Values for Probabilities of Correct Classification in Discriminant Analysis. 13(2).
Fernández-Plaza, S., & Gómez, S. V. (2021). Anemia ferropénica. Pediatria Integral, 25(5).
Fitriany, J., & Saputri, A. I. (2018). ANEMIA DEFISIENSI BESI. AVERROUS: Jurnal Kedokteran Dan Kesehatan Malikussaleh, 4(2). https://doi.org/10.29103/averrous.v4i2.1033
Foo, L. K., Chua, S. L., & Ibrahim, N. (2022). Attribute weighted naïve bayes classifier. Computers, Materials and Continua, 71(1). https://doi.org/10.32604/cmc.2022.022011
Gaver, P., & Postgraduate, N. (1987). Robust Empirical Event Rates Bayes Analyses of. 1979.
Goodman, L. E. O. A. (1971). The Analysis of Multidimensional Contingency Tables : Stepwise Procedures and Direct Esti- mation Methods for Building Models for Multiple Classifications. 13(1), 33–61.
Handcock, M. S. (1993). A Bayesian Analysis of Kriging. 1989.
Igbinosa, I., Berube, C., & Lyell, D. J. (2022). Iron deficiency anemia in pregnancy. In Current Opinion in Obstetrics and Gynecology (Vol. 34, Issue 2). https://doi.org/10.1097/GCO.0000000000000772
Johnson, A. A., Ott, M. Q., & Dogucu, M. (2022). Naive Bayes Classification. In Bayes Rules! https://doi.org/10.1201/9780429288340-14
Kȩdziora-Kornatowska, K., Mądra-Gackowska, K., & Gackowski, M. (2019). Anemia. In Encyclopedia of Biomedical Gerontology (pp. 222–228). Elsevier. https://doi.org/10.1016/B978-0-12-801238-3.11352-2
Kurkina, N. v., Gorshenina, E. I., Chegodaeva, L. v., & Polagimova, A. v. (2021). Anemia of Chronic Diseases. Klinicheskaya Onkogematologiya/Clinical Oncohematology, 14(3). https://doi.org/10.21320/2500-2139-2021-14-3-347-354
Laboratories, S. N. (1987). Bayesian Analysis Risk Analyses of Learning. 29(2).
Lamotte, R. (1978). Bayes Linear Estimators. 20(3).
Limits, B. C., & Density, P. (1968). Bayesian Confidence Limits for Reliability of Bayesian Confidence Limits for Reliability Terminated at First Failure. 10(1).
Link, R. F. (1965). Short-Cut Multiple Comparisons for Balanced s in gl e and Double Classifications : Part 1 , Results *. 7(2).
Low, L. Y. (1976). Some Properties of Variance Component Estimators in the Two-Way Classification. 18(1).
Manrai, M., Dawra, S., Srivastava, S., Kapoor, R., & Singh, A. (2022). Anemia in cirrhosis: An underestimated entity. World Journal of Clinical Cases, 10(3). https://doi.org/10.12998/wjcc.v10.i3.777
Mazzuchi, A. (1998). Bayesian Computations for a Class of Reliability Growth Models. 40(1).
Miller, B. (1980). Bayesian Analysis of the Two-Parameter Distribution. 22(March 1979).
Miller, R. W. (1989). Parametric Empirical Tolerance Intervals Bayes. 1964.
Montaño-Figueroa, E., & Gómez-Almaguer, D. (2022). Anemia aplásica. Gaceta de M�xico, 157(93). https://doi.org/10.24875/gmm.m21000472
Montaño-Figueroa, E. H., & Gómez-Almaguer, D. (2021). Aplastic anemia. Gaceta Medica de Mexico, 157. https://doi.org/10.24875/GMM.M21000472
Natekar, P., Deshmukh, C., Limaye, D., Ramanathan, V., & Pawar, A. (2022). A micro review of a nutritional public health challenge: Iron deficiency anemia in India. In Clinical Epidemiology and Global Health (Vol. 14). https://doi.org/10.1016/j.cegh.2022.100992
Pertiwi, M. W., Kusmira, M., Rezkiani, R., Simpony, B. K., Apriyani, Y., Iskandar, I. D., Wibisono, T., & Amirulloh, I. (2022). Naïve Bayes Classification Model for the Producer Price Index Prediction. SISTEMASI, 11(1). https://doi.org/10.32520/stmsi.v11i1.1669
Samson, K. L. I., Fischer, J. A. J., & Roche, M. L. (2022). Iron Status, Anemia, and Iron Interventions and Their Associations with Cognitive and Academic Performance in Adolescents: A Systematic Review. In Nutrients (Vol. 14, Issue 1). https://doi.org/10.3390/nu14010224
Shah, T., Khaskheli, M. S., Ansari, S., Lakhan, H., Shaikh, F., Zardari, A. A., Warsi, J., Rind, N. A., Rind, K. H., & Shar, A. H. (2022). Gestational Anemia and its effects on neonatal outcome, in the population of Hyderabad, Sindh, Pakistan. Saudi Journal of Biological Sciences, 29(1). https://doi.org/10.1016/j.sjbs.2021.08.053
Snapinn, S. M., & Knoke, J. D. (1985). An Evaluation of Smoothed Classification Error - Rate Estimators. May.
Stanley, A. Y., Wallace, J. B., Hernandez, A. M., & Spell, J. L. (2022). Anemia in pregnancy: Screening and clinical management strategies. MCN The American Journal of Maternal/Child Nursing, 47(1). https://doi.org/10.1097/NMC.0000000000000787
Tao, Z., Xu, J., Chen, W., Yang, Z., Xu, X., Liu, L., Chen, R., Xie, J., Liu, M., Wu, J., Wang, H., & Liu, J. (2021). Anemia is associated with severe illness in COVID-19: A retrospective cohort study. Journal of Medical Virology, 93(3), 1478–1488. https://doi.org/10.1002/jmv.26444
Techniques, E. A. (1996). Bayesian Analysis of Ordered Categorical Data From Industrial Experiments. 38(1).
Thompson, W. E., & Chang, E. Y. (1975). Bayes Confidence Limits for Reliability of Redundant Systems Mkz (%). 17(1), 89–93.
van Herwerden, D., O’Brien, J. W., Choi, P. M., Thomas, K. v., Schoenmakers, P. J., & Samanipour, S. (2022). Naive Bayes classification model for isotopologue detection in LC-HRMS data. Chemometrics and Intelligent Laboratory Systems, 223. https://doi.org/10.1016/j.chemolab.2022.104515
Weiss, G., Ganz, T., & Goodnough, L. T. (2019). Anemia of inflammation. In Blood (Vol. 133, Issue 1). https://doi.org/10.1182/blood-2018-06-856500
Copyright (c) 2024 Jurnal MSA ( Matematika dan Statistika serta Aplikasinya)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.