TRANSFORMASI FOURIER DAN TRANSFORMASI FOURIER QUATERNION
Abstract
pada paper ini menjelaskan transformasi Fourier baik yang bernilai real maupun yang bernilai quaternion. Perbedaan mendasarnya terletak pada kernel transformasi, dimana pada transformasi Fourier quaternion dibedakan menjadi tiga jenis, yaitu sisi kiri, sisi kanan dan dua sisi. Adapun sifat-sifat yang dibuktikan seperti pergeseran, modulasi, pengskalaan dan lain-lain (TFQ sisi kanan).References
Bahri, M,. Ashino, R., and Vailancourt, R. 2013. Convolution theorems for quaternion Fourier transform, properties and applications, Hindawi Publishing Corporation Abstact and Applied Analysis, vol. 2013, ID 162769 : 1-2.
Bahri, M., Ashino, R. 2013. Correlation theorems for type II quaternion Fourier transform, International conference on wavelet analysis and pattern recognition. 136-141.
Bahri, M., Hitzer, Ashino, R., and Hayasi, A. 2008. An uncertainty principle for quaternion fourier transform. Computer and Mathematics with Applications. 56: 2398.
Hitzer, E. M. S. 2013. Quaternion Fourier Trasform on Quaternion Field and Generalization. Advance Applications of Clifford Algebras. 17: 1- 20.
http://personal.fmipa.itb.ac.id/hgunawan/my-courses/fourier-analysis/
Morais, J.P., Geogiev S., Sprosieg, W. 2012. Real Quaternionic Calculus Handbook. Springer Basel: Hidelberg New York London.
Resnawati. 2013. Transformasi Kanonikal Linear Quaternion. Tesis. Makassar: Program Pascasarjana- UNHAS.
Soo-Chang, Pei, IEEE, Ding, JJ, and Chang J.H. 2001. Efficient Implementation of Quaternion Fourier Transform, Convolution, and Correlation by 2-D Complex FFT. IEEE Transactions On Signal Processing. 11: 1-14.
Supriadi, S. 2012. Prinsip Ketidakpastian Heisenberg Untuk Transformasi Fourier Quaternion Dua Sisi. Tesis, Makassar: Program Pascasarjana-UNHAS.
Todd, dkk. 2014. Quaternion Fourier Transform for Signal and Image Processing, Fokus.