Effects of Enhancment Span-60 of Vernonia amygdalina Leaves Extract-loaded Niosomes

  • Afrianty Pratiwi Universitas Islam Negeri Alauddin
  • Nur Azizah Syahrana Universitas Islam Negeri Alauddin
  • Isriany Ismail Universitas Islam Negeri Alauddin
  • Muhammad Ikhlas Arsul Universitas Islam Negeri Alauddin
Keywords: Cholesterol, extract-loaded niosomes, niosomes characterization, nonionic surfactan, span 60


Introdiction: Niosomes are a promising drug carrier because of their bilayer structure and the fact that they are produced by the self-association of nonionic surfactants and cholesterol in an aqueous phase. Niosomes are non-toxic, biodegradable, and compatible with human cells. Aims: This research aimed to create niosomes from V. amygdalina leaves and investigate how span 60 addition affects niosome properties. Methods: Extraction V. amygdalina using maceration, niosomes synthesized using a thin-film hydration process, and characterization performed by SEM, particle size, polydispersity index, zeta potential, and FTIR. Conclusion: V. amygdalina succesfully to loaded into niosomes. Span-60 with various concentration affected of characterization of niosomes. Increased span-60 increasing particle size, polydispersity index, and %EE.


Download data is not yet available.


Abd-Elghany, A. A., Mohamad, E. A., El-Sakhawy, M. A., Mansouri, S., Ismail, S. H., & Elneklawi, M. S. (2022). Enhancement of mechanical properties of chitosan film by doping with sage extract-loaded niosomes. Materials Research Express, 9(3), 035006. https://doi.org/10.1088/2053-1591/ac600a
Abou-Taleb, H. A., Sayed, A. M., Refaat, H., Alsenani, F., Alaaeldin, E., Mokhtar, F. A., Abdelmohsen, U. R., & Shady, N. H. (2022). Network Pharmacological Analysis of the Red Sea Sponge Hyrtios erectus Extract to Reveal Anticancer Efficacy of Corresponding Loaded Niosomes. Marine Drugs, 20(10). https://doi.org/10.3390/md20100628
Ag Seleci, D., Seleci, M., Walter, J.-G., Stahl, F., & Scheper, T. (2016). Niosomes as Nanoparticular Drug Carriers: Fundamentals and Recent Applications. Journal of Nanomaterials, 2016, 7372306. https://doi.org/10.1155/2016/7372306
Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2018). Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. Journal of Applied Research on Medicinal and Aromatic Plants, 11, 12–17. https://doi.org/10.1016/j.jarmap.2018.07.003
Alara, O. R., Abdurahman, N. H., Ukaegbu, C. I., & Kabbashi, N. A. (2019). Extraction and characterization of bioactive compounds in Vernonia amygdalina leaf ethanolic extract comparing Soxhlet and microwave-assisted extraction techniques. Journal of Taibah University for Science, 13(1), 414–422. https://doi.org/10.1080/16583655.2019.1582460
Alaraa, O. R., Abdurahman, N. H., Mudalip, S. K. A., & Olalere, O. A. (2017). Phytochemical and pharmacological properties of vernonia amygdalina: A review. Journal of Chemical Engineeringand Industrial Biotechnology, 2, 80–96. https://doi.org/10.15282/JCEIB-V2-07.29/9/2017/2.2
Asaithambi, K., Muthukumar, J., Chandrasekaran, R., Ekambaram, N., & Roopan, M. (2020). Synthesis and characterization of turmeric oil loaded non-ionic surfactant vesicles (niosomes) and its enhanced larvicidal activity against mosquito vectors. Biocatalysis and Agricultural Biotechnology, 29, 101737. https://doi.org/10.1016/j.bcab.2020.101737
Bayindir, Z. S., BeŞikci, A., & YÜksel, N. (2015). Paclitaxel-loaded niosomes for intravenous administration: Pharmacokineticsand tissue distribution in rats. 45(6), 1403–1412. https://doi.org/10.3906/sag-1408-129
Bhardwaj, P., Tripathi, P., Gupta, R., & Pandey, S. (2020). Niosomes: A review on niosomal research in the last decade. Journal of Drug Delivery Science and Technology, 56, 101581. https://doi.org/10.1016/j.jddst.2020.101581
Cetin, E. O., Salmanoglu, D. S., Ozden, I., Ors-Kumoglu, G., Akar, S., Demirozer, M., Karabey, F., Kilic, K. D., Kirilmaz, L., Uyanikgil, Y., & Sevimli-Gur, C. (2022). Preparation of Ethanol Extract of Propolis Loaded Niosome Formulation and Evaluation of Effects on Different Cancer Cell Lines. Nutrition and Cancer, 74(1), 265–277. https://doi.org/10.1080/01635581.2021.1876889
Gunes, A., Guler, E., Un, R. N., Demir, B., Barlas, F. B., Yavuz, M., Coskunol, H., & Timur, S. (2017). Niosomes of Nerium oleander extracts: In vitro assessment of bioactive nanovesicular structures. Journal of Drug Delivery Science and Technology, 37, 158–165. https://doi.org/10.1016/j.jddst.2016.12.013
Harahap, U., Dalimunthe, A., Hertiani, T., Muhammad, M., Nasri, N., & Satria, D. (2021). Antioxidant and antibacterial activities of ethanol extract of Vernonia amygdalina Delile. Leaves. AIP Conference Proceedings, 2342, 080011. https://doi.org/10.1063/5.0045447
Jacobs, C., & Müller, R. H. (2002). Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharmaceutical Research, 19(2), 189–194. Scopus. https://doi.org/10.1023/A:1014276917363
Kamble, B., Talreja, S., Gupta, A., Patil, D., Pathak, D., Moothedath, I., & Duraiswamy, B. (2013). Development and biological evaluation of Gymnema sylvestre extract-loaded nonionic surfactant-based niosomes. Nanomedicine, 8(8), 1295–1305. https://doi.org/10.2217/nnm.12.162
Kumbhar, D., Wavikar, P., & Vavia, P. (2013). Niosomal Gel of Lornoxicam for Topical Delivery: In vitro Assessment and Pharmacodynamic Activity. AAPS PharmSciTech, 14(3), 1072–1082. https://doi.org/10.1208/s12249-013-9986-5
Li, Q., Li, Z., Zeng, W., Ge, S., Lu, H., Wu, C., Ge, L., Liang, D., & Xu, Y. (2014). Proniosome-derived niosomes for tacrolimus topical ocular delivery: In vitro cornea permeation, ocular irritation, and in vivo anti-allograft rejection. European Journal of Pharmaceutical Sciences, 62, 115–123. https://doi.org/10.1016/j.ejps.2014.05.020
Marianecci, C., Rinaldi, F., Mastriota, M., Pieretti, S., Trapasso, E., Paolino, D., & Carafa, M. (2012). Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: Human and murine models. Journal of Controlled Release, 164(1), 17–25. https://doi.org/10.1016/j.jconrel.2012.09.018
Mehta, S. K., & Jindal, N. (2015). Tyloxapol Niosomes as Prospective Drug Delivery Module for Antiretroviral Drug Nevirapine. AAPS PharmSciTech, 16(1), 67–75. https://doi.org/10.1208/s12249-014-0183-y
Müller, R. H., Jacobs, C., & Kayser, O. (2001). Nanosuspensions as particulate drug formulations in therapy: Rationale for development and what we can expect for the future. Nanoparticulate Systems for Improved Drug Delivery, 47(1), 3–19. https://doi.org/10.1016/S0169-409X(00)00118-6
Pourmorad, F., Hosseinimehr, S. J., & Hosseinimehr, N. (2006). Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology, 5(11), 142–1145.
Quasie, O., Zhang, Y.-M., Zhang, H.-J., Luo, J., & Kong, L.-Y. (2016). Four new steroid saponins with highly oxidized side chains from the leaves of Vernonia amygdalina. Phytochemistry Letters, 15, 16–20. https://doi.org/10.1016/j.phytol.2015.11.002
Shehata, T. M., Ibrahim, M. M., & Elsewedy, H. S. (2021). Curcumin Niosomes Prepared from Proniosomal Gels: In Vitro Skin Permeability, Kinetic and In Vivo Studies. Polymers, 13(5). https://doi.org/10.3390/polym13050791
Sjögren, H., Ericsson, C. A., Evenäs, J., & Ulvenlund, S. (2005). Interactions between Charged Polypeptides and Nonionic Surfactants. Biophysical Journal, 89(6), 4219–4233. https://doi.org/10.1529/biophysj.105.065342
Zubairu, Y., Negi, L. M., Iqbal, Z., & Talegaonkar, S. (2015). Design and development of novel bioadhesive niosomal formulation for the transcorneal delivery of anti-infective agent: In-vitro and ex-vivo investigations. Asian Journal of Pharmaceutical Sciences, 10(4), 322–330. https://doi.org/10.1016/j.ajps.2015.02.001
How to Cite
Pratiwi, A., Syahrana, N. A., Ismail, I., & Arsul, M. I. (2023). Effects of Enhancment Span-60 of Vernonia amygdalina Leaves Extract-loaded Niosomes . Ad-Dawaa’ Journal of Pharmaceutical Sciences, 6(2), 53-61. https://doi.org/10.24252/djps.v6i2.45956
Abstract viewed = 16 times