Comparative Analysis of the Autodock 4.2 and Autodock Vina Methods in Predicting Thiazolidinedione Interactions with PPARG Receptor

  • Muhammad Andre Reynaldi STIKES Arjuna
    (ID)
  • Aulia Faradilla Universitas Tanjungpura
    (ID)
  • Rafika Sari Universitas Tanjungpura; Mahasiswa Program Doktoral Ilmu Farmasi, Universitas Gajah Mada
    (ID)
  • Hafrizal Universitas Tanjungpura; Mahasiswa Doktoral Ilmu Farmasi, Institut Teknologi Bandung
    (ID)
  • Robby Najini Universitas Tanjungpura
    (ID)
Keywords: Molecular docking, Autodock 4.2, Autodock Vina, Thiazolidinedione, PPARG

Abstract

Introduction: Molecular docking simulation is an in silico method that plays a role in drug discovery and analyzing drug interactions with receptors. The method using Autodock 4.2 and Autodock Vina is widely used in molecular docking simulations, especially for analyzing interactions that occur between ligands and receptors. Aims: This study was aims to compare the Autodock 4.2 and Autodock Vina methods in simulating the docking of thiazolidinedione against PPARG in terms of bond energy and type of interaction parameters. Methods: The method used in this research was molecular docking simulation using Autodock 4.2 and Autodock Vina. The two methods compared the interaction results and binding affinity scores in the thiazolidinedione group against PPARG. Result: The results of this study show that the interactions using the Autodock 4.2 and Autodock Vina methods have similar amino acids that are bound and the same active site. The binding affinity score also shows that the best are troglitazone, pioglitazone, native ligand and rosiglitazone. Conclusion: Based on the results of this study, it shows that molecular docking simulations using the Autodock 4.2 and Autodock Vina methods thiazolidinedione with PPARG have similar docking score patterns and almost the same types of interactions.

Downloads

Download data is not yet available.

References

Arunkumar, M., Mahalakshmi, M., Ashokkumar, V., Aravind, M. K., Gunaseelan, S., Mohankumar, V., … Varalakshmi, P. (2022). Evaluation of seaweed sulfated polysaccharides as natural antagonists targeting Salmonella typhi OmpF: molecular docking and pharmacokinetic profiling. Beni-Suef University Journal of Basic and Applied Sciences, 11(1). doi:10.1186/s43088-021-00192-x
Garrett M. Morris. (2010). AutoDock Version 4.2 - User Guide. Guide, 1–49.
Irudayaraj, S. S., Stalin, A., Sunil, C., Duraipandiyan, V., Al-Dhabi, N. A., & Ignacimuthu, S. (2016). Antioxidant, antilipidemic and antidiabetic effects of ficusin with their effects on GLUT4 translocation and PPARγ expression in type 2 diabetic rats. Chemico-Biological Interactions, 256, 85–93. doi:10.1016/j.cbi.2016.06.023
Lateef, T., Naeem, S., & Qureshi, S. A. (2020). In-silico studies of HMG-Co A reductase inhibitors present in fruits of Withania coagulans Dunal (Solanaceae). Tropical Journal of Pharmaceutical Research, 19(2), 305–312. doi:10.4314/tjpr.v19i2.13
Mazumder, M., Ponnan, P., Das, U., Gourinath, S., Khan, H. A., Yang, J., & Sakharkar, M. K. (2017). Investigations on Binding Pattern of Kinase Inhibitors with PPARγ: Molecular Docking, Molecular Dynamic Simulations, and Free Energy Calculation Studies. PPAR Research, 2017, 6397836. doi:10.1155/2017/6397836
Miñarro-Lleonar, M., Ruiz-Carmona, S., Alvarez-Garcia, D., Schmidtke, P., & Barril, X. (2022). Development of an Automatic Pipeline for Participation in the CELPP Challenge. International Journal of Molecular Sciences, 23(9). doi:10.3390/ijms23094756
Nickavar, B. (2022). Effect of organosulfur compounds from different garlic preparations on hyperlipidemia: An in-silico approach. Biointerface Research in Applied Chemistry, 12(3), 4048–4061. doi:10.33263/BRIAC123.40484061
Rashid, H. U., Ahmad, N., Abdalla, M., Khan, K., Martines, M. A. U., & Shabana, S. (2022). Molecular docking and dynamic simulations of Cefixime, Etoposide and Nebrodenside A against the pathogenic proteins of SARS-CoV-2. Journal of Molecular Structure, 1247, 131296. doi:10.1016/j.molstruc.2021.131296
Sandeep, G., Nagasree, K. P., Hanisha, M., & Kumar, M. M. K. (2011). AUDocker LE: A GUI for virtual screening with AUTODOCK Vina. BMC Research Notes, 4(Figure 3), 3–6. doi:10.1186/1756-0500-4-445
Sharma, D., Kumar, S., & Narasimhan, B. (2018). Estrogen alpha receptor antagonists for the treatment of breast cancer: A review. Chemistry Central Journal, 12(1), 1–32. doi:10.1186/s13065-018-0472-8
Shivanika, C., Deepak Kumar, S., Ragunathan, V., Tiwari, P., Sumitha, A., & Brindha Devi, P. (2022). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure and Dynamics, 40(2), 585–611. doi:10.1080/07391102.2020.1815584
Suhandi, C., Fadhilah, E., Silvia, N., Atusholihah, A., Prayoga, R. R., Megantara, S., & Muchtaridi, M. (2021). Molecular Docking Study of Mangosteen (Garcinia mangostana L.) Xanthone-Derived Isolates as Anti Androgen. Indonesian Journal of Cancer Chemoprevention, 12(1), 11. doi:10.14499/indonesianjcanchemoprev12iss1pp11-20
Zloh, M., & Kirton, S. B. (2018). The benefits of in silico modeling to identify possible small-molecule drugs and their off-target interactions. Future Medicinal Chemistry, 10(4), 423–432. doi:10.4155/fmc-2017-0151
Published
2024-06-30
How to Cite
Reynaldi, M. A., Faradilla, A., Sari, R., Riza, H., & Najini, R. (2024). Comparative Analysis of the Autodock 4.2 and Autodock Vina Methods in Predicting Thiazolidinedione Interactions with PPARG Receptor. Ad-Dawaa’ Journal of Pharmaceutical Sciences, 7(1), 11-20. https://doi.org/10.24252/djps.v7i1.47852
Section
Artikel
Abstract viewed = 136 times