The Preliminary Study of Electrigens Potential from Wastewater as The Manifestation Of "Khalifah Fil Tadbir" Conception

  • Hafsan Hafsan Universitas Islam Negeri Alauddin Makassar
    (ID)
  • Andi Indra Jaya Asaad Balai Riset Perikanan Budidaya Air Payau dan Penyuluhan Perikanan, Kementerian Kelautan dan Perikanan
    (ID)
  • Muh Ali Arsyad Politeknik Pertanian Negeri Pangkep
    (ID)
  • Arifuddin Ahmad Universitas Islam Negeri Alauddin Makassar
    (ID)
Keywords: Bacillus, Electrigens, MFC, Pseudomonas, Punaga

Abstract

This study reveals that the super-intensive shrimp farming waste from Punaga can be used as a source of electricity through a bio-electrogenic process based on indigenous potential bacteria from the waste. The results show that four types of potential bacteria isolated from the super-intensive shrimp farming waste can each produce a significant average power density. Bacteria isolate D (Bacillus sp) showed the highest electrogenic potential with an average power density of 38.55±0.87 mW/m², followed by bacteria isolate B (Pseudomonas sp) with an average power density of 34.72±2.80 mW/m², bacteria isolate C (Bacillus sp) with an average power density of 29.90±5.26 mW/m², and bacteria isolate A (Bacillus sp) with an average power density of 25.90±1.69 mW/m². This study shows that the super-intensive shrimp farming waste from Punaga can be utilized as a source of electricity through a bio-electrogenic process using certain potential bacteria, such as Bacillus sp and Pseudomonas sp isolates. The development of waste treatment technology as a source of electricity through the bio-electrogenic process can provide a significant contribution to addressing global energy and environmental issues. This can be considered an implementation of the concept of "khalifah fil tadbir", in which humans act as stewards of the earth, responsible for using natural resources wisely and being accountable for the resulting environmental impacts.

Downloads

Download data is not yet available.

References

Ai, C., Hou, S., Yan, Z., Zheng, X., Amanze, C., Chai, L., Qiu, G., & Zeng, W. (2019). Recovery of Metals from Acid Mine Drainage by Bioelectrochemical System Inoculated with a Novel Exoelectrogen, Pseudomonas sp. E8. Microorganisms, 8(1), 41. https://doi.org/10.3390/microorganisms8010041

Aiyer, K. S. (2020). How does electron transfer occur in microbial fuel cells? World Journal of Microbiology and Biotechnology, 36(2), 19. https://doi.org/10.1007/s11274-020-2801-z

Aravindavalli, B. (2012). Project Report: MFC.

Artha, O., Sudarno, Pramono, H., & Sari, L. (2019). Identification of extracellular enzyme-producing bacteria (proteolytic, cellulolytic, and amylolytic) in the sediment of extensive ponds in Tanggulrejo, Gresik. IOP Conference Series: Earth and Environmental Science, 236(1), 012003. https://doi.org/10.1088/1755-1315/236/1/012003

Aziz, S., Rehman Memon, A., Feroz Shah, S., Soomro, S. A., & Parkash, A. (2013). Prototype designing and operational aspects of microbial fuel cell-review paper. Sci.Int. (Lahore), 25(1), 49–56.

Bahartan, K., Amir, L., Israel, A., Lichtenstein, R. G., & Alfonta, L. (2012). In situ fuel processing in a microbial fuel cell. ChemSusChem, 5(9), 1820–1825. https://doi.org/10.1002/cssc.201200063

Balan, N. (2018). Evaluasi Kualitas Sedimen Tambak Udang Windu (Penaeus Monodon) Di Desa Margasari Kecamatan Labuhan Maringgai Kabupaten Lampung Timur. Universitas Lampung Bandar Lampung.

Bhusare, A., Ghalme, R., & Modi, V. (2010). Design of Microbial Fuel Cell: A Green Technology of Wastewater Treatment with Bio-Electricity Generation.

Chaturvedi, V., & Verma, P. (2016). Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresources and Bioprocessing, 3(1), 38. https://doi.org/10.1186/s40643-016-0116-6

Dan, O., Riyanto, B., Maddu, A., & Firmansyah, Y. (2012). Degradation of Organic Matter and Utilization of Electricity in Sediments of Traditional Shrimp Pond using Microbial Fuel Cell. Masyarakat Pengolahan Hasil Perikanan Indonesia, 15(3), 183–192.

Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5), 464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004

Fua, J. La. (2014). Aktualisasi Pendidikan Islam Dalam Pengelolaan Lingkungan Hidup Menuju Kesalehan Ekologis. Jurnal Al-Ta’dib, 7(1).

Gomaa, O. M., Selim, N., Fathy, R., Maghrawy, H. H., Gamal, M., El Kareem, H. A., Kyazze, G., & Keshavarz, T. (2021). Characterization of a biosurfactant producing electroactive Bacillus sp. for enhanced Microbial Fuel Cell dye decolourisation. Enzyme and Microbial Technology, 147(1), 109767. https://doi.org/10.1016/j.enzmictec.2021.109767

Gude, V. G., Kokabian, B., & Gadhamshetty, V. (2013). Beneficial bioelectrochemical systems for energy, water, and biomass production. Journal of Microbial and Biochemical Technology, 5(Specialissue.2). https://doi.org/10.4172/1948-5948.S6-005

Hartini. (2013). Eksistensi fikih lingkungan di era globalisasi. Al-Daulah, 1(2), 38–49.

Ilamathi, R., Merline Sheela, A., & Nagendra Gandhi, N. (2019). Comparative evaluation of Pseudomonas species in single chamber microbial fuel cell with manganese coated cathode for reactive azo dye removal. International Biodeterioration & Biodegradation, 144(1), 104744. https://doi.org/10.1016/j.ibiod.2019.104744

Kaoplod, W., & Chaijak, P. (2022). Electricity Generation in Cellulose-Fed Microbial Fuel Cell Using Thermophilic Bacterium, Bacillus sp. WK21. Microbiology and Biotechnology Letters, 50(1), 122–125. https://doi.org/10.48022/mbl.2201.01001

Kementerian Agama Republik Indonesia. (2022). Qur’an Kemenag. https://quran.kemenag.go.id/

Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 7(5), 375–381. https://doi.org/10.1038/nrmicro2113

Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial Fuel Cells: Methodology and Technology †. Environmental Science & Technology, 40(17), 5181–5192. https://doi.org/10.1021/es0605016

Mishra, B., Awasthi, S. K., & Rajak, R. K. (2017). A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 485334(9), 953–958.

Napitupulu, N. D., Munandar, A., Redjeki, S., & Tjasyono, B. (2019). Ecotheology dan Ecopedagogy: Upaya Mitigasi Terhadap Eksploitasi Alam Semesta. Voice of Wesley: Jurnal Ilmiah Musik Dan Agama, 1(2). https://doi.org/10.36972/jvow.v1i2.9

Ngurah, B., Putra, A., Mahendra, I. N. A., Kuntayoni, N. A., Istyorini, A., Dewanti, A., Fisika, P., Matematika, P., Biologi, P., Matematika, F., Alam, P., & Ganesha, U. P. (2014). Analisis Potensi Sedimen Hutan Bakau Sebagai Sumber Energi Listrik dengan Menggunakan Teknologi Sediment Microbial Fuel Cell (SMFC). Seminar Nasional FMIPA UNDIKSHA IV Tahun 2014, 2, 399–407.

Parkash, A. (2016). Microbial Fuel Cells: A Source of Bioenergy. Journal of Microbial & Biochemical Technology, 8(3), 247–255. https://doi.org/10.4172/1948-5948.1000293

Pham, H. T., Pham, N., & Vo, H. Q. (2021). Evaluating the application ability of membrane-less microbial fuel cells in shrimp farming wastewater recirculation. Science & Technology Development Journal - Science of The Earth & Environment, 5(1). https://doi.org/10.32508/stdjsee.v5i1.556

Pisciotta, J. M., Zaybak, Z., Call, D. F., Nam, J. Y., & Logan, B. E. (2012). Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Applied and Environmental Microbiology, 78(15), 5212–5219. https://doi.org/10.1128/AEM.00480-12

Ram Prasad, Gill, S. S., & Narendra Tuteja. (2018). New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier B.V.

Rodin, D. (2017). Alquran dan Konservasi Lingkungan: Telaah Ayat-Ayat Ekologis. Al-Tahrir: Jurnal Pemikiran Islam, 17(2). https://doi.org/10.21154/altahrir.v17i2.1035

Sandeep S. (2015). Microbial Fuel Cell for Electricity Production. International Journal of Bio-Technology and Research (IJBTR) ISSN(P, 5(1), 23–30. www.tjprc.org

Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017a). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356(1), 225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109

Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017b). Special Section: “Microbial fuel cells: From fundamentals to applications”: Guest Editors’ note. Journal of Power Sources, 356(1), 223–224. https://doi.org/10.1016/j.jpowsour.2017.04.071

Santoro, C., Artyushkova, K., Babanova, S., Atanassov, P., Ieropoulos, I., Grattieri, M., Cristiani, P., Trasatti, S., Li, B., & Schuler, A. J. (2014). Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application. Bioresource Technology, 163(1), 54–63. https://doi.org/10.1016/j.biortech.2014.03.091

Sari, D. R., Hidaya, C., & Darmawan. (2017). Studi Pemanfaatan Lumpur Sebagai Sumber Alternatif Energi Dengan Menggunakan Microbial Fuel Cells (Mfcs) [Institut Teknologi Sepuluh Nopember]. http://repository.its.ac.id/3741/

Suwoyo, H. S., Suwardi Tahe, & Mat Fahrur. (2015). Karakterisasi Limbah Sedimen Tambak Udang Vaname (Litopenaeus Vannamei) Super Intensif dengan Kepadatan Berbeda. Prosiding Forum Inovasi Teknologi Akuakultur 2015, 901–913.

Syah, R., Fahrur, M., Suwoyo, H. S., & Makmur, M. (2017). Performansi Instalasi Pengolah Air Limbah Tambak Superintensif. Media Akuakultur, 12(2), 95. https://doi.org/10.15578/ma.12.2.2017.95-103

Syahri, M., Mahargiani, T., Indrabrata, A. G., & Orlanda, O. O. (2019). Teknologi Bersih Microbial Fuel Cell (MFC) dari Limbah Cair Tempe Sebagai Sumber Energi Listrik Terbarukan. Prosiding Seminar Nasional Teknik Kimia “Kejuangan” Pengembangan Teknologi Kimia Untuk Pengolahan Sumber Daya Alam Indonesia, April, 1–6.

Treesubsuntorn, C., & Thiravetyan, P. (2021). Suitable Application of Echinodorus Cordifolius-Microbial Fuel Cells Inoculated with Bacillus thuringiensis. Waste and Biomass Valorization, 12(5), 2237–2245. https://doi.org/10.1007/s12649-020-01024-2

Virdis, B., Freguia, S., Rozendal, R. A., Rabaey, K., Yuan, Z., & Keller, J. (2011). Microbial Fuel Cells. In Treatise on Water Science (Vol. 4, pp. 641–665). Elsevier. https://doi.org/10.1016/B978-0-444-53199-5.00098-1

Wang, H., & Ren, Z. J. (2013). A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances, 31(8), 1796–1807. https://doi.org/10.1016/j.biotechadv.2013.10.001

Published
2024-12-28
How to Cite
Hafsan, H., Asaad, A. I. J., Arsyad, M. A., & Ahmad, A. (2024). The Preliminary Study of Electrigens Potential from Wastewater as The Manifestation Of "Khalifah Fil Tadbir" Conception. Jurnal Biotek, 12(2), 198-215. https://doi.org/10.24252/jb.v12i2.50112
Section
Articles
Abstract viewed = 9 times

Most read articles by the same author(s)