The Preliminary Study of Electrigens Potential from Wastewater as The Manifestation Of "Khalifah Fil Tadbir" Conception
Abstract
This study reveals that the super-intensive shrimp farming waste from Punaga can be used as a source of electricity through a bio-electrogenic process based on indigenous potential bacteria from the waste. The results show that four types of potential bacteria isolated from the super-intensive shrimp farming waste can each produce a significant average power density. Bacteria isolate D (Bacillus sp) showed the highest electrogenic potential with an average power density of 38.55±0.87 mW/m², followed by bacteria isolate B (Pseudomonas sp) with an average power density of 34.72±2.80 mW/m², bacteria isolate C (Bacillus sp) with an average power density of 29.90±5.26 mW/m², and bacteria isolate A (Bacillus sp) with an average power density of 25.90±1.69 mW/m². This study shows that the super-intensive shrimp farming waste from Punaga can be utilized as a source of electricity through a bio-electrogenic process using certain potential bacteria, such as Bacillus sp and Pseudomonas sp isolates. The development of waste treatment technology as a source of electricity through the bio-electrogenic process can provide a significant contribution to addressing global energy and environmental issues. This can be considered an implementation of the concept of "khalifah fil tadbir", in which humans act as stewards of the earth, responsible for using natural resources wisely and being accountable for the resulting environmental impacts.
Downloads
References
Ai, C., Hou, S., Yan, Z., Zheng, X., Amanze, C., Chai, L., Qiu, G., & Zeng, W. (2019). Recovery of Metals from Acid Mine Drainage by Bioelectrochemical System Inoculated with a Novel Exoelectrogen, Pseudomonas sp. E8. Microorganisms, 8(1), 41. https://doi.org/10.3390/microorganisms8010041
Aiyer, K. S. (2020). How does electron transfer occur in microbial fuel cells? World Journal of Microbiology and Biotechnology, 36(2), 19. https://doi.org/10.1007/s11274-020-2801-z
Aravindavalli, B. (2012). Project Report: MFC.
Artha, O., Sudarno, Pramono, H., & Sari, L. (2019). Identification of extracellular enzyme-producing bacteria (proteolytic, cellulolytic, and amylolytic) in the sediment of extensive ponds in Tanggulrejo, Gresik. IOP Conference Series: Earth and Environmental Science, 236(1), 012003. https://doi.org/10.1088/1755-1315/236/1/012003
Aziz, S., Rehman Memon, A., Feroz Shah, S., Soomro, S. A., & Parkash, A. (2013). Prototype designing and operational aspects of microbial fuel cell-review paper. Sci.Int. (Lahore), 25(1), 49–56.
Bahartan, K., Amir, L., Israel, A., Lichtenstein, R. G., & Alfonta, L. (2012). In situ fuel processing in a microbial fuel cell. ChemSusChem, 5(9), 1820–1825. https://doi.org/10.1002/cssc.201200063
Balan, N. (2018). Evaluasi Kualitas Sedimen Tambak Udang Windu (Penaeus Monodon) Di Desa Margasari Kecamatan Labuhan Maringgai Kabupaten Lampung Timur. Universitas Lampung Bandar Lampung.
Bhusare, A., Ghalme, R., & Modi, V. (2010). Design of Microbial Fuel Cell: A Green Technology of Wastewater Treatment with Bio-Electricity Generation.
Chaturvedi, V., & Verma, P. (2016). Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresources and Bioprocessing, 3(1), 38. https://doi.org/10.1186/s40643-016-0116-6
Dan, O., Riyanto, B., Maddu, A., & Firmansyah, Y. (2012). Degradation of Organic Matter and Utilization of Electricity in Sediments of Traditional Shrimp Pond using Microbial Fuel Cell. Masyarakat Pengolahan Hasil Perikanan Indonesia, 15(3), 183–192.
Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5), 464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004
Fua, J. La. (2014). Aktualisasi Pendidikan Islam Dalam Pengelolaan Lingkungan Hidup Menuju Kesalehan Ekologis. Jurnal Al-Ta’dib, 7(1).
Gomaa, O. M., Selim, N., Fathy, R., Maghrawy, H. H., Gamal, M., El Kareem, H. A., Kyazze, G., & Keshavarz, T. (2021). Characterization of a biosurfactant producing electroactive Bacillus sp. for enhanced Microbial Fuel Cell dye decolourisation. Enzyme and Microbial Technology, 147(1), 109767. https://doi.org/10.1016/j.enzmictec.2021.109767
Gude, V. G., Kokabian, B., & Gadhamshetty, V. (2013). Beneficial bioelectrochemical systems for energy, water, and biomass production. Journal of Microbial and Biochemical Technology, 5(Specialissue.2). https://doi.org/10.4172/1948-5948.S6-005
Hartini. (2013). Eksistensi fikih lingkungan di era globalisasi. Al-Daulah, 1(2), 38–49.
Ilamathi, R., Merline Sheela, A., & Nagendra Gandhi, N. (2019). Comparative evaluation of Pseudomonas species in single chamber microbial fuel cell with manganese coated cathode for reactive azo dye removal. International Biodeterioration & Biodegradation, 144(1), 104744. https://doi.org/10.1016/j.ibiod.2019.104744
Kaoplod, W., & Chaijak, P. (2022). Electricity Generation in Cellulose-Fed Microbial Fuel Cell Using Thermophilic Bacterium, Bacillus sp. WK21. Microbiology and Biotechnology Letters, 50(1), 122–125. https://doi.org/10.48022/mbl.2201.01001
Kementerian Agama Republik Indonesia. (2022). Qur’an Kemenag. https://quran.kemenag.go.id/
Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 7(5), 375–381. https://doi.org/10.1038/nrmicro2113
Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial Fuel Cells: Methodology and Technology †. Environmental Science & Technology, 40(17), 5181–5192. https://doi.org/10.1021/es0605016
Mishra, B., Awasthi, S. K., & Rajak, R. K. (2017). A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 485334(9), 953–958.
Napitupulu, N. D., Munandar, A., Redjeki, S., & Tjasyono, B. (2019). Ecotheology dan Ecopedagogy: Upaya Mitigasi Terhadap Eksploitasi Alam Semesta. Voice of Wesley: Jurnal Ilmiah Musik Dan Agama, 1(2). https://doi.org/10.36972/jvow.v1i2.9
Ngurah, B., Putra, A., Mahendra, I. N. A., Kuntayoni, N. A., Istyorini, A., Dewanti, A., Fisika, P., Matematika, P., Biologi, P., Matematika, F., Alam, P., & Ganesha, U. P. (2014). Analisis Potensi Sedimen Hutan Bakau Sebagai Sumber Energi Listrik dengan Menggunakan Teknologi Sediment Microbial Fuel Cell (SMFC). Seminar Nasional FMIPA UNDIKSHA IV Tahun 2014, 2, 399–407.
Parkash, A. (2016). Microbial Fuel Cells: A Source of Bioenergy. Journal of Microbial & Biochemical Technology, 8(3), 247–255. https://doi.org/10.4172/1948-5948.1000293
Pham, H. T., Pham, N., & Vo, H. Q. (2021). Evaluating the application ability of membrane-less microbial fuel cells in shrimp farming wastewater recirculation. Science & Technology Development Journal - Science of The Earth & Environment, 5(1). https://doi.org/10.32508/stdjsee.v5i1.556
Pisciotta, J. M., Zaybak, Z., Call, D. F., Nam, J. Y., & Logan, B. E. (2012). Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Applied and Environmental Microbiology, 78(15), 5212–5219. https://doi.org/10.1128/AEM.00480-12
Ram Prasad, Gill, S. S., & Narendra Tuteja. (2018). New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier B.V.
Rodin, D. (2017). Alquran dan Konservasi Lingkungan: Telaah Ayat-Ayat Ekologis. Al-Tahrir: Jurnal Pemikiran Islam, 17(2). https://doi.org/10.21154/altahrir.v17i2.1035
Sandeep S. (2015). Microbial Fuel Cell for Electricity Production. International Journal of Bio-Technology and Research (IJBTR) ISSN(P, 5(1), 23–30. www.tjprc.org
Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017a). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356(1), 225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109
Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017b). Special Section: “Microbial fuel cells: From fundamentals to applications”: Guest Editors’ note. Journal of Power Sources, 356(1), 223–224. https://doi.org/10.1016/j.jpowsour.2017.04.071
Santoro, C., Artyushkova, K., Babanova, S., Atanassov, P., Ieropoulos, I., Grattieri, M., Cristiani, P., Trasatti, S., Li, B., & Schuler, A. J. (2014). Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application. Bioresource Technology, 163(1), 54–63. https://doi.org/10.1016/j.biortech.2014.03.091
Sari, D. R., Hidaya, C., & Darmawan. (2017). Studi Pemanfaatan Lumpur Sebagai Sumber Alternatif Energi Dengan Menggunakan Microbial Fuel Cells (Mfcs) [Institut Teknologi Sepuluh Nopember]. http://repository.its.ac.id/3741/
Suwoyo, H. S., Suwardi Tahe, & Mat Fahrur. (2015). Karakterisasi Limbah Sedimen Tambak Udang Vaname (Litopenaeus Vannamei) Super Intensif dengan Kepadatan Berbeda. Prosiding Forum Inovasi Teknologi Akuakultur 2015, 901–913.
Syah, R., Fahrur, M., Suwoyo, H. S., & Makmur, M. (2017). Performansi Instalasi Pengolah Air Limbah Tambak Superintensif. Media Akuakultur, 12(2), 95. https://doi.org/10.15578/ma.12.2.2017.95-103
Syahri, M., Mahargiani, T., Indrabrata, A. G., & Orlanda, O. O. (2019). Teknologi Bersih Microbial Fuel Cell (MFC) dari Limbah Cair Tempe Sebagai Sumber Energi Listrik Terbarukan. Prosiding Seminar Nasional Teknik Kimia “Kejuangan” Pengembangan Teknologi Kimia Untuk Pengolahan Sumber Daya Alam Indonesia, April, 1–6.
Treesubsuntorn, C., & Thiravetyan, P. (2021). Suitable Application of Echinodorus Cordifolius-Microbial Fuel Cells Inoculated with Bacillus thuringiensis. Waste and Biomass Valorization, 12(5), 2237–2245. https://doi.org/10.1007/s12649-020-01024-2
Virdis, B., Freguia, S., Rozendal, R. A., Rabaey, K., Yuan, Z., & Keller, J. (2011). Microbial Fuel Cells. In Treatise on Water Science (Vol. 4, pp. 641–665). Elsevier. https://doi.org/10.1016/B978-0-444-53199-5.00098-1
Wang, H., & Ren, Z. J. (2013). A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances, 31(8), 1796–1807. https://doi.org/10.1016/j.biotechadv.2013.10.001
Copyright (c) 2024 Hafsan Hafsan, Andi Indra Jaya Asaad, Muh Ali Arsyad, Arifuddin Ahmad
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Jurnal Biotek agree to the following terms: Authors retain the copyright and grant Universitas Islam Negeri Alauddin Makassar right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgement of the work's authorship and initial publication in Universitas Islam Negeri Alauddin Makassar. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Universitas Islam Negeri Alauddin Makassar. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.