Ekstrak Buah Lerak (Sapindus rarak) sebagai Sabun Antibakteri yang Ramah Lingkungan

  • Novitarini Novitarini Universitas Bumigora
    (ID)
  • I Nyoman Bagus Aji Kresnapati Universitas Bumigora
    (ID)
  • Alfarizi Muzaifa Akmi Universitas Bumigora
    (ID)
Keywords: Antibacterial; Biosurfactant; Lerak Fruit; Normal Flora

Abstract

Synthetic surfactants contribute to environmental pollution and can cause skin irritation, highlighting the need for natural biosurfactants. Lerak fruit (Sapindus rarak) shows promise as a biosurfactant due to its 28% saponin content and potential antibacterial activity. This study aimed to evaluate the antibacterial activity of lerak fruit extract using three parameters: inhibition zone, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) against Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa (Gram-negative). The research utilized a Posttest Only Control Group Design to test the antibacterial activity of lerak fruit extract against skin-surface normal flora, specifically Staphylococcus aureus and Pseudomonas aeruginosa. All antibacterial activity results were analyzed using One-Way ANOVA in SPSS IBM version 22. The study found the MIC to be 6.25% for Gram-positive bacteria and 1.56% for Gram-negative bacteria. The MBC was determined to be 25% for Gram-positive bacteria and 50% for Gram-negative bacteria. At a 50% concentration, the inhibition zones against Gram-positive and Gram-negative bacteria were 21.53 mm and 22.13 mm, respectively. These results demonstrate that lerak fruit extract possesses strong antibacterial activity against both Gram-positive and Gram-negative bacteria. This research provides a foundation for developing environmentally friendly antibacterial soap formulations using lerak fruit extract.

Downloads

Download data is not yet available.

References

Abdullahi, Z. U., Musa, S. S., Abu-Odah, H., Ahmed, A., Lawan, A. A., & Bello, U. M. (2023). Bactericidal Effects of Snake Venom Phospholipases A2: A Systematic Review and Analysis of Minimum Inhibitory Concentration. Physiologia, 3(1), 30–42. https://doi.org/10.3390/physiologia3010003

Abutaleb, N. S., Elkashif, A., Flaherty, D. P., & Seleem, M. N. (2021). In Vivo Antibacterial Activity of Acetazolamide. Antimicrobial Agents and Chemotherapy, 65(4). https://doi.org/10.1128/AAC.01715-20

Akbari, S., Abdurahman, N. H., Yunus, R. M., Fayaz, F., & Alara, O. R. (2018). Biosurfactants—a new frontier for social and environmental safety: a mini review. Biotechnology Research and Innovation, 2(1), 81–90. https://doi.org/10.1016/j.biori.2018.09.001

Ariawa, D. C., Suradnyana, I. G. M., & Made, N. S. D. (2024). Formulation of Lerak Liquid Extract ( Sapindus rarak DC . ) as a Biosurfactant for Facial Soap. 14(February), 1–11.

Aryanti, N., Nafiunisa, A., Kusworo, T. D., & Wardhani, D. H. (2021). Dye solubilization ability of plant derived surfactant from Sapindus rarak DC. extracted with the assistance of ultrasonic waves. Environmental Technology and Innovation, 22, 101450. https://doi.org/10.1016/j.eti.2021.101450

Benkova, M., Soukup, O., & Marek, J. (2020). Antimicrobial susceptibility testing: currently used methods and devices and the near future in clinical practice. Journal of Applied Microbiology, 129(4), 806–822. https://doi.org/10.1111/jam.14704

Bimanto, H., Wahyuni, Y. D., Mutiarawati, D. T., & Endarini, L. H. (2020). Phytochemical Screening and In Vitro Antibacterial Activity of Green Tea (Camellia Sinensis L) Extract Against Staphylococcus Epidermidis. Health Notions, 4(8), 261–266. https://doi.org/10.33846/hn40805

Choi, H., Shin, M. K., Ahn, H. J., Lee, T. R., Son, Y., & Kim, K. S. (2018). Irritating effects of sodium lauryl sulfate on human primary keratinocytes at subtoxic levels of exposure. Microscopy Research and Technique, 81(11), 1339–1346. https://doi.org/10.1002/jemt.23143

Fitria, U., Sulisetijono, S., Lelitawati, M., Jasman, M. W., Firdaus, Z., & Muktafi, A. (2024). Comparison of Saponin Levels of Lerak Extract (Sapindus rarak) Maceration and Socletation Results Based on UV-Vis Spectrophotometry Analysis. BIO Web of Conferences, 117. https://doi.org/10.1051/bioconf/202411701015

Freitas, R., Silvestro, S., Coppola, F., Costa, S., Meucci, V., Battaglia, F., Intorre, L., Soares, A. M. V. M., Pretti, C., & Faggio, C. (2020). Toxic impacts induced by Sodium lauryl sulfate in Mytilus galloprovincialis. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 242, 110656. https://doi.org/10.1016/j.cbpa.2020.110656

Johnson, P., Trybala, A., Starov, V., & Pinfield, V. J. (2021). Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Advances in Colloid and Interface Science, 288, 102340. https://doi.org/10.1016/j.cis.2020.102340

Kazemipoor, M., Fadaei Tehrani, P., Zandi, H., & Golvardi Yazdi, R. (2021). Chemical composition and antibacterial activity of Berberis vulgaris ( barberry ) against bacteria associated with caries. Clinical and Experimental Dental Research, 7(4), 601–608. https://doi.org/10.1002/cre2.379

Kowalska, B. K., & Dudek, R. W. (2021). The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens, 10(2), 1–21. https://doi.org/10.3390/pathogens10020165

Maulida, F., & Taufiq Fathaddin, M. (2024). Application of Natural Surfactant from Morus alba, Soapnut, Sapindus rarak for Enhanced Oil Recovery – Critical Review. IOP Conference Series: Earth and Environmental Science, 1339(1), 012025. https://doi.org/10.1088/1755-1315/1339/1/012025

Novitarini, Merari, J. p., & Marlina, D. (2022). Antibacterial Activity of Moringa Plants (Moringa oleifera Lam.) to Overcome Antibiotic Resistance: A Systematic Review. Bioscientia Medicina : Journal of Biomedicine and Translational Research, 6(10), 2259–2273. https://doi.org/10.37275/bsm.v6i10.591

Novitarini, Ramandha, M. E. P., & Pratiwi, B. Y. H. (2024). Aktivitas Antibakteri Ekstrak Daun Kelor (Moringa oleifera Lam.) terhadap Staphylococcus epidermidis Penyebab Jerawat. Jurnal Kolaboratif Sains, 7(5), 1556–1561. https://doi.org/10.56338/jks.v7i5.5075

Nurhayati, L. S., Yahdiyani, N., & Hidayatulloh, A. (2020). Perbandingan Pengujian Aktivitas Antibakteri Starter Yogurt dengan Metode Difusi Sumuran dan Metode Difusi Cakram. Jurnal Teknologi Hasil Peternakan, 1(2), 41. https://doi.org/10.24198/jthp.v1i2.27537

Okombi, S. L., Gillaizeau, F., Leuillet, S., Douillard, B., Le Fresne-Languille, S., Carton, T., De Martino, A., Moussou, P., Bonnaud-Rosaye, C., & André, V. (2021). Effect of Sodium Lauryl Sulfate (SLS) Applied as a Patch on Human Skin Physiology and Its Microbiota. Cosmetics, 8(1), 6. https://doi.org/10.3390/cosmetics8010006

Putri, D. C. A., Putri, N. P. A., & Listyawati, M. B. (2023). Potensi Pengembangan Lerak ( Sapindus rarak ) Sebagai Bahan Bermanfaat Di Bidang Farmasi. Jurnal Farmasi Galenika.

Risha Amilia Pratiwi, Zuhri, M., & Oktaviani, I. (2024). HOW CAN THE WORLD OVERLOOK Sapindus rarak BIOPROSPECTION? A NICHE FOR INDONESIA. BIOTROPIA, 31(1), 10–22. https://doi.org/10.11598/btb.2024.31.1.1926

Rodr, C., Alonso, C. C., Garc, C., Carballo, J., & Capita, R. (2022). Bactericidal Concentration ( MBC ) for Twelve Antimicrobials. Biology, 11(Mic), 46.

Sari, R. I. P., Ardinata, N., Hermansyah, O., Rahmawati, S., & Masrijal, C. D. P. (2024). Testing the activity and formulation of natural hand soap based on natural surfactant of lerak fruit(Sapindus rarak DC.) agints Staphylococcus aureus. Medical Sains : Jurnal Ilmiah Kefarmasian, 9(1), 347–354. https://doi.org/10.37874/ms.v9i1.1151

Sen, S., & Yildirim, I. (2022). A Tutorial on How to Conduct Meta-Analysis with IBM SPSS Statistics. Psych, 4(4), 640–667. https://doi.org/10.3390/psych4040049

Shehabeldine, A. M., Amin, B. H., Hagras, F. A., Ramadan, A. A., Kamel, M. R., Ahmed, M. A., Atia, K. H., & Salem, S. S. (2023). Potential Antimicrobial and Antibiofilm Properties of Copper Oxide Nanoparticles: Time-Kill Kinetic Essay and Ultrastructure of Pathogenic Bacterial Cells. Applied Biochemistry and Biotechnology, 195(1), 467–485. https://doi.org/10.1007/s12010-022-04120-2

Shirisha, A., & Vijayakumar, A. (2023). Minimum Inhibitory Concentration (MIC) and Minimum Bacterial Concentration (MBC) Evaluation of Green Synthesised Silver Nanoparticles on Staphylococcus aureus and Streptococcus agalactiae. International Journal of Veterinary Sciences and Animal Husbandry, 8(4), 244–249. https://doi.org/10.22271/veterinary.2023.v8.i4d.604

Siyal, A. A., Shamsuddin, M. R., Low, A., & Rabat, N. E. (2020). A review on recent developments in the adsorption of surfactants from wastewater. Journal of Environmental Management, 254, 109797. https://doi.org/10.1016/j.jenvman.2019.109797

Sunarti, L. S. (2022). Microbial Normal Flora: Its Existence And Their Contribution To Homeostasis. Journal of Advances in Microbiology, 1–15. https://doi.org/10.9734/jamb/2022/v22i930483

Widowati, R., Firdaus Ramdani, M., & Handayani, S. (2022). Senyawa Fitokimia dan Aktivitas Antibakteri Ekstrak Etanol Buah Lerak (Sapindus rarak) terhadap Tiga Bakteri Penyebab Infeksi Nosokomial. Jurnal Penelitian Kesehatan Suara Forikes, 13(3), 649–654. http://forikes-ejournal.com/index.php/SF

Published
2024-12-28
How to Cite
Novitarini, N., Kresnapati, I. N. B. A., & Akmi, A. M. (2024). Ekstrak Buah Lerak (Sapindus rarak) sebagai Sabun Antibakteri yang Ramah Lingkungan . Jurnal Biotek, 12(2), 186-197. https://doi.org/10.24252/jb.v12i2.51245
Section
Articles
Abstract viewed = 31 times