The Synthesis and Characterization of Structural Properties of Hydroxyapatite from Cuttlefish Shell Using X-Ray Diffraction Method
Abstract
The preparation of solid hydroxyapatite (HAp) with variations in calcination temperature has been carried out. This study aims to determine the crystal size, dislocation density and crystallinity levels of HAp using XRD. HAp is made by mixing cuttlefish shell powder with a solution of KH2PO4, NaOH and Aquades then drying it for 24 hours. Extraction of CaCO3 from cuttlefish shells using the calcination method at various temperature variations, namely 600 0C, 800 0C and 1,000 0C. XRD test to determine the crystal size value, crystal defects and crystallinity of HAp material. XRD data shows that HAp solids form crystals with smaller sizes (50.97 nm, 48.64 nm and 36.52 nm) when the calcination temperature increases, dislocation density increase (0.38 nm-2.10-4, 0.42 nm-2.10-4 and 0.74 nm-2.10-4) as the calcination temperature increases and the crystallinity value decreases (46.31%, 39.06% and 37.93%) based on changes in calcination temperature.
Downloads
References
[2] P. Widiyanti, “Sintesis dan Karakterisasi Komposit Hidroksiapatit dari Tulang Sotong (Sepia sp.)-Kitosan untuk Kandidat Aplikasi Bone Filler”.
[3] S. John et al., “Toxicity of Natural Hydroxyapatite,” in Biomedical Engineering, vol. 23, P. Vizureanu and M. Simona Baltatu, Eds., IntechOpen, 2024. doi: 10.5772/intechopen.111654.
[4] F. Lebre, R. Sridharan, M. J. Sawkins, D. J. Kelly, F. J. O’Brien, and E. C. Lavelle, “The shape and size of hydroxyapatite particles dictate inflammatory responses following implantation,” Sci Rep, vol. 7, no. 1, p. 2922, Jun. 2017, doi: 10.1038/s41598-017-03086-0.
[5] C. K. Holley and M. A. Dobrovolskaia, “Innate Immunity Modulating Impurities and the Immunotoxicity of Nanobiotechnology-Based Drug Products,” Molecules, vol. 26, no. 23, p. 7308, Dec. 2021, doi: 10.3390/molecules26237308.
[6] M. Maruyama, “Hydroxyapatite clay used to fill the gap between implant and bone,” The Journal of Bone and Joint Surgery. British volume, vol. 77-B, no. 2, pp. 213–218, Mar. 1995, doi: 10.1302/0301-620X.77B2.7706333.
[7] S. Ferraris et al., “Bioactive materials: In vitro investigation of different mechanisms of hydroxyapatite precipitation,” Acta Biomaterialia, vol. 102, pp. 468–480, Jan. 2020, doi: 10.1016/j.actbio.2019.11.024.
[8] P. Kazimierczak and A. Przekora, “Osteoconductive and Osteoinductive Surface Modifications of Biomaterials for Bone Regeneration: A Concise Review,” Coatings, vol. 10, no. 10, p. 971, Oct. 2020, doi: 10.3390/coatings10100971.
[9] S. Ebrahimi, C. Stephen Sipaut@ Mohd Nasri, and S. E. Bin Arshad, “Hydrothermal synthesis of hydroxyapatite powders using Response Surface Methodology (RSM),” PLoS ONE, vol. 16, no. 5, p. e0251009, May 2021, doi: 10.1371/journal.pone.0251009.
[10] S. E. Cahyaningrum, N. Herdyastuty, B. Devina, and D. Supangat, “Synthesis and Characterization of Hydroxyapatite Powder by Wet Precipitation Method,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 299, p. 012039, Jan. 2018, doi: 10.1088/1757-899X/299/1/012039.
[11] J. Zhu, D. Kong, Y. Zhang, N. Yao, Y. Tao, and T. Qiu, “The Influence of Conditions on Synthesis Hydroxyapatite By Chemical Precipitation Method,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 18, no. 6, p. 062023, Oct. 2011, doi: 10.1088/1757-899X/18/6/062023.
[12] S. Gates-Rector and T. Blanton, “The Powder Diffraction File: a quality materials characterization database,” Powder Diffr., vol. 34, no. 4, pp. 352–360, Dec. 2019, doi: 10.1017/S0885715619000812.
[13] E. Fitriyanti, Utari, and B. Purnama, “Comparison XRD pattern of CoFe 2 O 4 thin films and nanoparticles,” J. Phys.: Conf. Ser., vol. 909, p. 012010, Nov. 2017, doi: 10.1088/1742-6596/909/1/012010.
[14] K. U. Henggu, B. Ibrahim, and P. Suptijah, “Hydroxyapatite Production from Cuttlebone as Bone Scaffold Material Preparations,” Jurnal PHPI, vol. 22, no. 1, p. 1, Apr. 2019, doi: 10.17844/jphpi.v22i1.25869.
[15] Herpandi, I. Widiastuti, Wulandari, and M. R. Aldino, “Utilization of Cuttlefish Bone as The Alternative Source of Heterogenic Alkali Catalyst,” IOP Conf. Ser.: Earth Environ. Sci., vol. 995, no. 1, p. 012058, Apr. 2022, doi: 10.1088/1755-1315/995/1/012058.
[16] A. Errich et al., “Toxic heavy metals removal using a hydroxyapatite and hydroxyethyl cellulose modified with a new Gum Arabic,” Indonesian J. Sci. Technol, vol. 6, no. 1, pp. 41–64, Jan. 2021, doi: 10.17509/ijost.v6i1.31480.
[17] H. Daupor, “Extraction of Hydroxyapatite by Alkaline Acid from Budu Waste and Synthesis Using Calcination Method,” J. Phys.: Conf. Ser., vol. 2049, no. 1, p. 012041, Oct. 2021, doi: 10.1088/1742-6596/2049/1/012041.
[18] Masruroh, A. B. Manggara, T. Lapailaka, and R. Triandi, “Penentuan Ukuran Kristal (Crystallite Size) Lapisan Tipis PZT Dengan Metode XRD Melalui Pendekatan Persamaan Debye Scherrer,” Erudio, vol. 1, no. 2, 2013, doi: 10.18551/erudio.1-2.4.
[19] J. Zarah, “Interpretasi Data Derajat Kristanilitas dan Ukuran Kristal Karbon Aktif Ampas Tebu Teraktivasi KOH, H3PO4, Na2S2O3, KMnO4,”.
[20] F. W. Puspita, “Synthesis And Characterization Of Hydroxyapatite From Shell Eggs Race Chicken (Gallus Gallus) Using Wet Deposition Method,” Journal of Chemistry , vol. 6, no. 1, 2017.
[21] C. Combes, S. Cazalbou, and C. Rey, “Apatite Biominerals,” Minerals, vol. 6, no. 2, p. 34, Apr. 2016, doi: 10.3390/min6020034.
[22] J. B. Franklin, B. Zou, P. Petrov, D. W. McComb, M. P. Ryan, and M. A. McLachlan, “Optimised pulsed laser deposition of ZnO thin films on transparent conducting substrates,” J. Mater. Chem., vol. 21, no. 22, p. 8178, 2011, doi: 10.1039/c1jm10658a.
Copyright (c) 2024 Sitti, Jumardin Jumardin, Nurul Fuadi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.