Potensi Pemanfaatan Limbah Tulang Ikan Sunu (Plectropomus Leopardus): Analisis FTIR dan XRF untuk Karakterisasi Serbuk Material

  • Sefrilita Risqi Adikaning Rani Universitas Islam Negeri Alauddin Makassar
    (ID) https://orcid.org/0000-0002-8583-6274
  • Ihsan Ihsan Universitas Islam Negeri Alauddin Makassar
    (ID)
  • Asriani Asriani
    (ID)
  • Ananda Anidya Putri Universitas Islam Negeri Alauddin Makassar
    (ID)
Kata Kunci: Limbah tulang ikan sunu, karakterisasi FTIR, analisis XRF, kalsium fosfat, biokeramik, material biomedis

Abstrak

Penelitian ini bertujuan untuk mengkaji potensi pemanfaatan limbah tulang ikan sunu sebagai sumber material melalui analisis karakterisasi FTIR (Fourier Transform Infrared Spectroscopy) dan XRF (X-ray Fluorescence). Hasil analisis FTIR menunjukkan adanya puncak-puncak karakteristik yang mengindikasikan keberadaan gugus fungsional penting seperti hidroksil, fosfat, dan karbonat. Keberadaan kalsium fosfat sebagai komponen utama menandakan potensi serbuk tulang ini dalam aplikasi biomedis, seperti pembuatan implan tulang dan bahan biokeramik. Selain itu, analisis XRF mengungkapkan konsentrasi tinggi kalsium (84.8%) dan fosfor (13.5%), serta oksida lain yang relevan menunjukkan potensi penggunaannya sebagai suplemen nutrisi dan bahan bangunan. Secara keseluruhan, penelitian ini menunjukkan bahwa serbuk tulang ikan sunu memiliki potensi signifikan untuk aplikasi di bidang kesehatan, pangan, dan material komposit, serta mendukung keberlanjutan dalam pengelolaan limbah perikanan.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Referensi

[1] A. A. Maktoof, R. J. Elherarlla, and S. Ethaib, “Identifying the nutritional composition of fish waste, bones, scales, and fins,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 871, no. 1, p. 012013, Jun. 2020, doi: 10.1088/1757-899X/871/1/012013.
[2] Y. Mu, A. Saffarzadeh, and T. Shimaoka, “Utilization of waste natural fishbone for heavy metal stabilization in municipal solid waste incineration fly ash,” Journal of Cleaner Production, vol. 172, pp. 3111–3118, Jan. 2018, doi: 10.1016/j.jclepro.2017.11.099.
[3] A. N. Asikin, I. Kusumaningrum, and T. Hidayat, “Effect of knife-fish bone powder addition on characteristics of starch and seaweed kerupuk as calcium and crude fiber sources,” Curr Res Nutr Food Sci, vol. 7, no. 2, pp. 584–599, Aug. 2019, doi: 10.12944/CRNFSJ.7.2.27.
[4] F. Rosi, A. Burnstock, K. J. Van Den Berg, C. Miliani, B. G. Brunetti, and A. Sgamellotti, “A non-invasive XRF study supported by multivariate statistical analysis and reflectance FTIR to assess the composition of modern painting materials,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 71, no. 5, pp. 1655–1662, Jan. 2009, doi: 10.1016/j.saa.2008.06.011.
[5] P. S. Nayak and B. K. Singh, “Instrumental characterization of clay by XRF, XRD and FTIR,” Bull Mater Sci, vol. 30, no. 3, pp. 235–238, Jun. 2007, doi: 10.1007/s12034-007-0042-5.
[6] G. Jozanikohan and M. N. Abarghooei, “The Fourier transform infrared spectroscopy (FTIR) analysis for the clay mineralogy studies in a clastic reservoir,” J Petrol Explor Prod Technol, vol. 12, no. 8, pp. 2093–2106, Aug. 2022, doi: 10.1007/s13202-021-01449-y.
[7] Ş. Yalçin and İ. H. Mutlu, “Structural Characterization of Some Table Salt Samples by XRD, ICP, FTIR and XRF Techniques,” Acta Phys. Pol. A, vol. 121, no. 1, pp. 50–52, Jan. 2012, doi: 10.12693/APhysPolA.121.50.
[8] N. Meftah and M. S. Mahboub, “Spectroscopic Characterizations of Sand Dunes Minerals of El-Oued (Northeast Algerian Sahara) by FTIR, XRF and XRD Analyses,” Silicon, vol. 12, no. 1, pp. 147–153, Jan. 2020, doi: 10.1007/s12633-019-00109-5.
[9] B. Hazra et al., “FTIR, XRF, XRD and SEM characteristics of Permian shales, India,” Journal of Natural Gas Science and Engineering, vol. 32, pp. 239–255, May 2016, doi: 10.1016/j.jngse.2016.03.098.
[10] R. Dewi, H. Agusnar, Z. Alfian, and Tamrin, “Characterization of technical kaolin using XRF, SEM, XRD, FTIR and its potentials as industrial raw materials,” J. Phys.: Conf. Ser., vol. 1116, p. 042010, Dec. 2018, doi: 10.1088/1742-6596/1116/4/042010.
[11] J. Thuriot-Roukos, M. Bennis, E. Heuson, P. Roussel, F. Dumeignil, and S. Paul, “Design of a multi-well plate for high-throughput characterization of heterogeneous catalysts by XRD, FT-IR, Raman and XRF spectroscopies,” RSC Adv., vol. 8, no. 71, pp. 40912–40920, 2018, doi: 10.1039/C8RA08216B.
[12] M. Boutinguiza, J. Pou, R. Comesaña, F. Lusquiños, A. De Carlos, and B. León, “Biological hydroxyapatite obtained from fish bones,” Materials Science and Engineering: C, vol. 32, no. 3, pp. 478–486, Apr. 2012, doi: 10.1016/j.msec.2011.11.021.
[13] J. Xia et al., “Enhanced Thermal Conductivity of Polymer Composite by Adding Fishbone-like Silicon Carbide,” Nanomaterials, vol. 11, no. 11, p. 2891, Oct. 2021, doi: 10.3390/nano11112891.
[14] F. Hani, A. Firouzi, M. R. Islam, and M. G. Sumdani, “Mechanical and thermal properties of FISHBONE‐BASED epoxy composites: The effects of thermal treatment,” Polymer Composites, vol. 42, no. 3, pp. 1224–1234, Mar. 2021, doi: 10.1002/pc.25895.
[15] N. Savlak, Ö. Çağındı, G. Erk, B. Öktem, and E. Köse, “Treatment Method Affects Color, Chemical, and Mineral Composition of Seabream ( Sparus aurata) Fish Bone Powder from by-Products of Fish Fillet,” Journal of Aquatic Food Product Technology, vol. 29, no. 6, pp. 592–602, Jul. 2020, doi: 10.1080/10498850.2020.1775742.
Diterbitkan
2025-02-09
Bagian
Artikel
Abstrak viewed = 17 times

##plugins.generic.recommendByAuthor.heading##

> >>