CHRYSIN MENINGKATKAN EFEK SITOTOKSIK TNF-RELATED APOPTOSIS-INDUCING LIGAND TERHADAP SEL HEK293
Abstract
TNF-related apoptosis-inducing ligand merupakan salah satu pilihan pengobatan kanker yang secara efektif dapat menginduksi apoptosis melalui aktivasi death receptor (DR4 dan DR5). Penggunaan TNF-related apoptosis-inducing ligand menyebabkan efek samping yang jauh lebih kecil dibandingkan dengan penggunaan kemoterapi. Namun saat ini beberapa jenis kanker menunjukkan resistensi terhadap TNF-related apoptosis-inducing ligand. Penggunaan TNF-related apoptosis-inducing ligand yang dikombinasikan dengan bahan alam menjadi salah satu alternatif untuk mengatasi resistensi yang timbul. Chrysin merupakan flavonoid yang memiliki efek antioksidan dan antikanker. Efek kombinasi TNF-related apoptosis-inducing ligand dan chrysin terhadap sel HEK293 ditentukan berdasarkan parameter viabilitas sel menggunakan metode WST-1. Chrysin tidak menyebabkan toksisitas yang besar terhadap sel HEK293 (<20%) namun setelah dikombinasikan dengan TNF-related apoptosis-inducing ligand menunjukkan peningkatan efek sitotoksik (41%) dan efek sinergi yang nyata (indeks sinergi = 0,69). Ini menunjukkan bahwa chrysin berpotensi untuk mengatasi resistensi terhadap TNF-related apoptosis-inducing ligand khususnya pada sel tumorigenik ginjal.
References
Andrzejewski, T., Deeb, D., Gao, X., Danyluk, A., Arbab, A. S., Dulchavsky, S. A., & Gautam, S.C. Therapeutic efficacy of curcumin/TRAIL combination regimen for hormone-refractory prostate cancer. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 17(6), 257-267. 2008
Ashkenazi, A., Holland, P., & Eckhardt, S. G. Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/tumor necrosis factor–related apoptosis-inducing ligand (rhApo2L/TRAIL). Journal of Clinical Oncology, 26(21), 3621-3630. 2008
Cho, H., Yun, C.-W., Park, W.-K., Kong, J.-Y., Kim, K. S., Park, Y., Kim, B.-K. Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacological Research, 49(1), 37-43. 2004
Fas, S. C., Baumann, S., Zhu, J. Y., Giaisi, M., Treiber, M. K., Mahlknecht, U., Li-Weber, M. Wogonin sensitizes resistant malignant cells to TNFα-and TRAIL-induced apoptosis. Blood, 108(12), 3700-3706. 2006
Feng, Y., Wang, N., Zhu, M., Feng, Y., Li, H., & Tsao, S. Recent progress on anticancer candidates in patents of herbal medicinal products. Recent patents on food, nutrition & agriculture, 3(1), 30-48. 2011
Fulda, S., & Debatin, K.-M. Resveratrol-mediated sensitisation to TRAIL-induced apoptosis depends on death receptor and mitochondrial signalling. European Journal of Cancer, 41(5), 786-798. 2005
Gibson, S. B., Oyer, R., Spalding, A. C., Anderson, S. M., & Johnson, G. L. Increased expression of death receptors 4 and 5 synergizes the apoptosis response to combined treatment with etoposide and TRAIL. Molecular and cellular biology, 20(1), 205-212. 2000
Guan, L. S., Li, G. C., Chen, C. C., Liu, L. Q., & Wang, Z. Y. Rb‐associated protein 46 (RbAp46) suppresses the tumorigenicity of adenovirus‐transformed human embryonic kidney 293 cells. International journal of cancer, 93(3), 333-338. 2001
He, F., Wang, Q., Zheng, X.-L., Yan, J.-Q., Yang, L., Sun, H., Wang, X. Wogonin potentiates cisplatin-induced cancer cell apoptosis through accumulation of intracellular reactive oxygen species. Oncology reports, 28(2), 601-605. 2012
Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. Global cancer statistics. CA: a cancer journal for clinicians, 61(2), 69-90. 2011
Kavsan, V. M., Iershov, A. V., & Balynska, O. V. Immortalized cells and one oncogene in malignant transformation: old insights on new explanation. BMC cell biology, 12(1), 23. 2011
Keane, M. M., Ettenberg, S. A., Nau, M. M., Russell, E. K., & Lipkowitz, S. Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer research, 59(3), 734-741. 1999
Khoo, B. Y., Chua, S. L., & Balaram, P. Apoptotic effects of chrysin in human cancer cell lines. International journal of molecular sciences, 11(5), 2188-2199. 2010
Lee, E., Enomoto, R., Suzuki, C., Ohno, M., Ohashi, T., Miyauchi, A., Yokoi, T. Wogonin, a Plant Flavone, Potentiates Etoposide‐Induced Apoptosis in Cancer Cells. Annals of the New York Academy of Sciences, 1095(1), 521-526. 2007
Lee, S.-J., Noh, H.-J., Sung, E.-G., Song, I.-H., Kim, J.-Y., Kwon, T. K., & Lee, T.-J. Berberine sensitizes TRAIL-induced apoptosis through proteasome-mediated downregulation of c-FLIP and Mcl-1 proteins. International journal of oncology, 38(2), 485. 2011
Li, X., Wang, J.-N., Huang, J.-M., Xiong, X.-K., Chen, M.-F., Ong, C.-N., Yang, X.-F. Chrysin promotes tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induced apoptosis in human cancer cell lines. Toxicology in vitro, 25(3), 630-635. 2011
Lin, Y.-C., Boone, M., Meuris, L., Lemmens, I., Van Roy, N., Soete, A., Drmanac, R. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nature communications, 5, 4767. 2014
Parajuli, P., Joshee, N., Rimando, A. M., Mittal, S., & Yadav, A. K. In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta medica, 75(01), 41-48. 2009
Sanderson, J. T., Hordijk, J., Denison, M. S., Springsteel, M. F., Nantz, M. H., & Van Den Berg, M. Induction and inhibition of aromatase (CYP19) activity by natural and synthetic flavonoid compounds in H295R human adrenocortical carcinoma cells. Toxicological Sciences, 82(1), 70-79. 2004
Scambia, G., Ranelletti, F., Panici, P. B., Bonanno, G., De Vincenzo, R., Piantelli, M., & Mancuso, S. Synergistic antiproliferative activity of quercetin and cisplatin on ovarian cancer cell growth. Anti-cancer drugs, 1(1), 45-48. 1990
Shen, C., Gu, M., Song, C., Miao, L., Hu, L., Liang, D., & Zheng, C. The tumorigenicity diversification in human embryonic kidney 293 cell line cultured in vitro. Biologicals, 36(4), 263-268. 2008
Shi, R.-X., Ong, C.-N., & Shen, H.-M. Protein kinase c inhibition and x-linked inhibitor of apoptosis protein degradation contribute to the sensitization effect of luteolin on tumor necrosis factor–related apoptosis-inducing ligand–induced apoptosis in cancer cells. Cancer research, 65(17), 7815-7823. 2005
Walczak, H., Miller, R. E., Ariail, K., Gliniak, B., Griffith, T. S., Kubin, M., Le, T. Tumoricidal activity of tumor necrosis factor–related apoptosis–inducing ligand in vivo. Nature medicine, 5(2), 157-163. 1999
Wang, W., VanAlstyne, P. C., Irons, K. A., Chen, S., Stewart, J. W., & Birt, D. F. Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in human colon carcinoma cell lines. Nutrition and cancer, 48(1), 106-114. 2004
Woodman, O. L., & Chan, E. C. Vascular and anti‐oxidant actions of flavonols and flavones. Clinical and Experimental Pharmacology and Physiology, 31(11), 786-790. 2004
Yamanaka, T., Shiraki, K., Sugimoto, K., Ito, T., Fujikawa, K., Ito, M., Suzuki, A. Chemotherapeutic Agents Augment TRAIL‐Induced Apoptosis in Human Hepatocellular Carcinoma Cell Lines. Hepatology, 32(3), 482-490. 2000
Zhang, L., & Fang, B. Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer gene therapy, 12(3), 228-237. 2005