Bilangan Pembeda tanpa Titik Terisolasi Graf Cycle Books
Kata Kunci:
bilangan pembeda tanpa titik terisolasi, dimensi metrik, graf cycle books, himpunan pembeda, himpunan pembeda tanpa titik terisolasi
Abstrak
Referensi
Abidin, W. (2021): Bilangan Pembeda Tanpa Titik Terisolasi Graf Hasil Operasi Korona dan Hasil Operasi Sisir Titik, Disertasi Program Doktor, InstitutTeknologi Bandung.
Avadayappan, S., Bhuvaneshwari, M. dan Chitra, P. J. B. (2018): Non-isolated resolving number for some splitting graphs, International Journal of Mathematical Combinatorics, 9–18.
Diestel, R. (2005): Graph Theory, Springer Book, New York.
Harary, F. dan Melter, R. A. (1976). On themetric dimension of graph, Ars Combinatoria, 2, 191–195.
Chartrand, G., Eroh, L., Johnson, M. A. dan Oellermann, O. R. (2000): Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics, 105, 99–113.
Chartrand, G. dan Zhang, P. (2003): The theory and application of resolvability in graphs, Congressus Numerantium, 160, 47–68.
Chitra, P. J. B. dan Arumugam, S. (2015): Resolving Sets without Isolated Vertices, Procedia Computer Science, 74, 38–42.
Harary, F. dan Melter, R. A. (1976): On the metric dimension of graph, Ars Combinatoria, 2, 191–195.
Khuller, S., Raghavachari, B. dan Rosenfield, A. (1996): Landmarks in graphs, Discrete Applied Mathematics, 70, 217–229.
Santoso, J and Darmaji. (2018): The partition dimension of cycle books graph, doi :10.1088/1742-6596/974/1/012070.
Seb"o" ̈, A. dan Tannier, E. (2004): On metric generators of graphs, Mathematics of Operations Research, 29, 383–393.
Slater, P.J. (1975). Leaves of trees, Proceeding of the 6Th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantium, 14, 549-559.
Avadayappan, S., Bhuvaneshwari, M. dan Chitra, P. J. B. (2018): Non-isolated resolving number for some splitting graphs, International Journal of Mathematical Combinatorics, 9–18.
Diestel, R. (2005): Graph Theory, Springer Book, New York.
Harary, F. dan Melter, R. A. (1976). On themetric dimension of graph, Ars Combinatoria, 2, 191–195.
Chartrand, G., Eroh, L., Johnson, M. A. dan Oellermann, O. R. (2000): Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics, 105, 99–113.
Chartrand, G. dan Zhang, P. (2003): The theory and application of resolvability in graphs, Congressus Numerantium, 160, 47–68.
Chitra, P. J. B. dan Arumugam, S. (2015): Resolving Sets without Isolated Vertices, Procedia Computer Science, 74, 38–42.
Harary, F. dan Melter, R. A. (1976): On the metric dimension of graph, Ars Combinatoria, 2, 191–195.
Khuller, S., Raghavachari, B. dan Rosenfield, A. (1996): Landmarks in graphs, Discrete Applied Mathematics, 70, 217–229.
Santoso, J and Darmaji. (2018): The partition dimension of cycle books graph, doi :10.1088/1742-6596/974/1/012070.
Seb"o" ̈, A. dan Tannier, E. (2004): On metric generators of graphs, Mathematics of Operations Research, 29, 383–393.
Slater, P.J. (1975). Leaves of trees, Proceeding of the 6Th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantium, 14, 549-559.
Diterbitkan
2023-08-23
##submission.howToCite##
[1]
Wahyuni Abidin, “Bilangan Pembeda tanpa Titik Terisolasi Graf Cycle Books”, MSA, vol. 11, no. 1, hlm. 118-124, Agu 2023.
Bagian
Artikel
##submission.copyrightStatement##
##submission.license.cc.by-nc4.footer##