ANALYZING STUDENTS' CONSTRUCTION OF THE RELATIONSHIP BETWEEN CONTINUITY AND DIFFERENTIABILITY
Abstract
Abstract:
The relationship between continuity and differentiability in graphical problems are two concepts that students are pivotal in understanding derivative concepts. However, researchers rarely pay attention to how students understand the relationship between Continuity and differentiability or vice versa. This study investigates students' understanding of the relationship between continuity and differentiability. This study is exploratory and focuses on the meanings students construct. The participants were 195 third-year undergraduate students from various Indonesian universities. A questionnaire and interview were used to collect data. Ten of the participants agreed to an in-depth interview for exploration and clarification. Thematic analysis was used to deduce patterns from participants' responses based on the findings. The results indicated that students construct three types of meanings when they solve problems: physical, analytical, and covariational. The findings could serve as a conceptual framework for future learning processes emphasizing continuity and differentiability.
Abstrak:
Hubungan antara kontinuitas dan diferensiasi dalam soal grafis merupakan dua konsep yang sangat penting bagi siswa dalam memahami konsep turunan. Namun peneliti jarang memperhatikan bagaimana siswa memahami hubungan antara Kontinuitas dan diferensiasi atau sebaliknya. Penelitian ini menyelidiki pengetahuan siswa tentang hubungan antara kontinuitas dan diferensiasi. Penelitian ini bersifat eksploratif dan berfokus pada makna yang dibangun siswa. Pesertanya adalah mahasiswa S1 tahun ketiga dari berbagai universitas di Indonesia yang berjumlah 195 orang. Kuesioner dan wawancara digunakan untuk mengumpulkan data. Sepuluh peserta menyetujui wawancara mendalam untuk eksplorasi dan klarifikasi. Analisis tematik digunakan untuk menyimpulkan pola tanggapan peserta berdasarkan temuan. Hasilnya menunjukkan bahwa siswa membangun tiga jenis makna ketika mereka memecahkan masalah: fisik, analitis, dan dan kovarian. Temuan ini dapat berfungsi sebagai kerangka konseptual untuk proses pembelajaran di masa depan yang menekankan kontinuitas dan diferensiasi.
Downloads
References
Baker, B., Cooley, L., & Trigueros, M. (2000). A Calculus Graphing Schema. Journal for Research in Mathematics Education, 5(7), 557–578. https://doi.org/10.2307/749887.
Berry, J. S., & Nyman, M. A. (2003). Promoting students’ graphical understanding of the calculus. The Journal of Mathematical Behavior, 22(4), 479–495. https://doi.org/10.1016/J.JMATHB.2003.09.006.
Biza, I., & Zachariades, T. (2010). First year mathematics undergraduates’ settled images of tangent line. The Journal of Mathematical Behavior, 29(4), 218–229. https://doi.org/10.1016/J.JMATHB.2010.11.001.
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706QP063OA.
Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352–378. https://doi.org/10.2307/4149958.
Carlson, M. P., Madison, B., & West, R. D. (2015). A Study of Students’ Readiness to Learn Calculus. International Journal of Research in Undergraduate Mathematics Education 2015 1:2, 1(2), 209–233. https://doi.org/10.1007/S40753-015-0013-Y.
Cooley, L., Trigueros, M., & Baker, B. (2007). Schema Thematization: A Framework and an Example. Journal for Research in Mathematics Education, 38(4), 370–392. https://eric.ed.gov/?id=EJ766155.
de Almeida, L. M. W., & da Silva, K. A. P. (2018). A semiotic interpretation of the derivative concept in a textbook. ZDM - Mathematics Education, 50(5), 881–892. https://doi.org/10.1007/s11858-018-0975-8.
Dibbs, R. (2019). Forged in failure: engagement patterns for successful students repeating calculus. Educational Studies in Mathematics, 101(1), 35–50. https://doi.org/10.1007/s10649-019-9877-0.
Fernández-Plaza, J. A., & Simpson, A. (2016). Three concepts or one? Students’ understanding of basic limit concepts. Educational Studies in Mathematics, 93(3), 315–332. https://doi.org/10.1007/s10649-016-9707-6.
Fuentealba, C., Sánchez-Matamoros, G., Badillo, E., & Trigueros, M. (2017). Thematization of derivative schema in university students: nuances in constructing relations between a function’s successive derivatives. International Journal of Mathematical Education in Science and Technology, 48(3), 374–392. https://doi.org/10.1080/0020739X.2016.1248508.
García-García, J., & Dolores-Flores, C. (2019). Pre-university students’ mathematical connections when sketching the graph of derivative and antiderivative functions. Mathematics Education Research Journal. https://doi.org/10.1007/s13394-019-00286-x.
Haciomeroglu, E. S., Aspinwall, L., & Presmeg, N. C. (2010). Contrasting Cases of Calculus Students’ Understanding of Derivative Graphs. Mathematical Thinking and Learning, 12(2), 152–176. https://doi.org/10.1080/10986060903480300.
Hong, Y. Y., & Thomas, M. O. J. (2015). Graphical construction of a local perspective on differentiation and integration. Mathematics Education Research Journal, 27(2), 183–200. https://doi.org/10.1007/s13394-014-0135-6.
Huang, C.-H. (2014). Engineering students’ generating counterexamples of calculus concepts. Global Journal of Engineering Education, 16(2). http://www.wiete.com.au/journals/GJEE/Publish/vol16no2/06-Huang-C-H.pdf.
Ikram, M., Purwanto, Parta, I. N., & Susanto, H. (2020). Exploring the potential role of reversible reasoning: Cognitive research on inverse function problems in mathematics. Journal for the Education of Gifted Young Scientists, 8(1), 591–611. https://doi.org/10.17478/jegys.665836.
Jones, S. R. (2017). An exploratory study on student understandings of derivatives in real-world, non-kinematics contexts. Journal of Mathematical Behavior, 45, 95–110. https://doi.org/10.1016/j.jmathb.2016.11.002.
Kertil, M., Erbas, A. K., & Cetinkaya, B. (2019). Developing prospective teachers’ covariational reasoning through a model development sequence. Mathematical Thinking and Learning, 21(3), 207–233. https://doi.org/10.1080/10986065.2019.1576001.
Martin, L. C., & Towers, J. (2016). Folding back , thickening and mathematical met-befores. Journal of Mathematical Behavior, 43, 89–97. https://doi.org/10.1016/j.jmathb.2016.07.002.
Mcgowen, M. A., & Tall, D. O. (2013). Flexible thinking and met-befores : Impact on learning mathematics. Journal of Mathematical Behavior, 32(3), 527–537. https://doi.org/10.1016/j.jmathb.2013.06.004.
Park, J. (2015). Is the derivative a function? If so, how do we teach it? Educational Studies in Mathematics, 89(2), 233–250. https://doi.org/10.1007/s10649-015-9601-7.
Rich, K. M., Yadav, A., & Schwarz, C. V. (2019). Computational thinking, mathematics, and science: Elementary teachers’ perspectives on integration. Journal of Technology and Teacher Education, 27(2), 165–205. https://www.researchgate.net/publication/337386137_Computational_Thinking_Mathematics_and_Science_Elementary_Teachers’_Perspectives_on_Integration.
Rittle-Johnson, B., Schneider, M., & Star, J. R. (2015). Not a One-Way Street: Bidirectional Relations Between Procedural and Conceptual Knowledge of Mathematics. Educational Psychology Review, 27(4), 587–597. https://doi.org/10.1007/s10648-015-9302-x.
Sánchez-Matamoros, G., Fernández, C., & Llinares, S. (2014). Developing pre-service teachers’ noticing of Sstudens’ understanding of the derivate concept. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-014-9544-y.
Sand, O. P., Lockwood, E., Caballero, M. D., & Mørken, K. (2022). Three cases that demonstrate how students connect the domains of mathematics and computing. Journal of Mathematical Behavior, 67(May 2021). https://doi.org/10.1016/j.jmathb.2022.100955.
Scheibling-Sève, C., Pasquinelli, E., & Sander, E. (2020). Assessing conceptual knowledge through solving arithmetic word problems. Educational Studies in Mathematics, 103(3), 293–311. https://doi.org/10.1007/s10649-020-09938-3.
Scheiner, T., Godino, J. D., Montes, M. A., Pino-Fan, L. R., & Climent, N. (2022). On metaphors in thinking about preparing mathematics for teaching: In memory of José (“Pepe”) Carrillo Yáñez (1959–2021). Educational Studies in Mathematics, 253–270. https://doi.org/10.1007/s10649-022-10154-4.
Sevimli, E. (2018a). Undergraduates ’ propositional knowledge and proof schemes regarding differentiability and integrability concepts. International Journal of Mathematical Education in Science and Technology, 5211. https://doi.org/10.1080/0020739X.2018.1430384.
Sevimli, E. (2018b). Understanding students’ hierarchical thinking: A view from continuity, differentiability and integrability. Teaching Mathematics and Its Applications, 37(1), 1–16. https://doi.org/10.1093/teamat/hrw028.
Siyepu, S. W. (2015). Analysis of errors in derivatives of trigonometric functions. International Journal of STEM Education, 2(1), 16. https://doi.org/10.1186/s40594-015-0029-5.
Swinyard, C., & Larsen, S. (2012). Coming to understand the formal definition of limit: Insights gained from engaging students in reinvention. Journal for Research in Mathematics Education, 43(4), 465–493. https://doi.org/10.5951/JRESEMATHEDUC.43.4.0465/0.
Tall, D. O. (2008). The transition to formal thinking in mathematics. Mathematics Education Research Journal, 20(2), 5–24. https://doi.org/10.1007/BF03217474.
Tsamir, P., & Ovodenko, R. (2013). University students’ grasp of inflection points. Educational Studies in Mathematics, 83(3), 409–427. https://doi.org/10.1007/s10649-012-9463-1.
Viholainen, A. (2008). Incoherence of a concept image and erroneous conclusions in the case of differentiability. The Mathematics Enthusiast, 5(2–3), 231–248. https://doi.org/10.54870/1551-3440.1104.
Zandieh, M. J., & Knapp, J. (2006). Exploring the role of metonymy in mathematical understanding and reasoning : The concept of derivative as an example. Journal of Mathematical Behavior, 25(1), 1–17. https://doi.org/10.1016/j.jmathb.2005.11.002.
Zehavi, N. (2004). Symbol sense with a symbolic-graphical system: A story in three rounds. Journal of Mathematical Behavior, 23(2), 183–203. https://doi.org/10.1016/j.jmathb.2004.03.003.
Copyright (c) 2023 Nasrun, Muhammad Ikram
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3)Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).