Analisis Pendekatan Metode Vector Autoregressive (VAR) dalam Meramalkan Jumlah Pengadaan Beras di Sulawesi Selatan
Abstract
This study discusses forecasting the amount of rice procurement in South Sulawesi. The need increases every year because it is one of the staple foods of the Indonesian population that is consumed everyday. Related to this, to ensure the availability of stock of rice suppiles throughout the South Sulawesi region, this is done by estimating the number of procurements in terms of rice prices and rice production. The purpose of this study is to determine the forecasting model, the variables that have a relationship between variables and the results of forecasting the amount of rice procurement. The results obtained in this study indicate that the smallest AIC value is found in the length of lag 2 so that the model used is the VAR model (3). In addition, all the variables used have a significant effect. Then from the forecasting results obtained, the rice price variabes (Y1) and the amount of rice production (Y2) have MAPE values of 20,4 % dan 14,0 %, which means the forecasting results are good. The results of the forecast number of procurement based on the price in term of the price of rice and the amount of production in the text five years has increased every year.
References
[2] Fina Andika Frida, S.T., M.T dan Arif Rochman Fachruddin, S.T., M.T.,
Manajemen Industri, (Jawa Tengah : Lakeisha, 2020), h. 33.
[3] Dian Tiara dan Aniq Atiqi Rochmawati, Prediksi Harga Saham PT. Hanson International Tbk menggunakan Metode Vector Autoregressive (VAR) Stationer, Jurnal e-Proceeding of Engineering, Vol. 7, No. 1, 2020, h. 2683.
[4] Dwi Reskiyani Febrianti dkk., Metode Vector Autoregressive (VAR) dalam Menganalisis Pengaruh Kurs Mata Uang terhadap Ekspor dan Impor di Indonesia, Jurnal Statistik, Vol. 2 No. 1, 2021, h.26.
[5] Andri Saputra dan Mirtawati, Vector Autoregressive Integrated (VAR) menggunakan Software R. Jurnal Baut dan Manufaktur, Vol. 02 No. 01,2020, h. 10-11.
[6] DiAsih I Maruddanidan Diah Safitri, Vector Autoregrresive (VAR) untuk Peramalan Harga Saham PT Indofood Sukses Makmur Indonesia TBK, Jurnal Matematika, Vol. 11 No. 1, 2008, h. 7-8.
[7] Enders Walter, Applied Econometric Time Series. University of Alabama (United states of America), Waley, h. 294.
[8] C. R. Ferry, Irwan, Nurfadilah, Peramalan Tingkat Suku Bunga Pasar Uang antar Bank (PUAB) dengan Vector Autoregressive Exogenous (VARX), Jurnal MSA Vol. 6 No. 1, 2018, h. 53.
[9] Fitriani Fariz Ichsandi dkk., Peramalan Laju Inflasi dan Nilai Tukar Rupiah Terhadap Dolar Amerika menggunakan Model Vector Autoregressive (VAR), Jurnal Gaussian, Vol. 3 No. 4, 2014, h. 676.
[10] Wahyuni Windasari, Pendekatan Analisis Vector Autoregressive (VAR) dalam Hubungan Harga Saham Sektor Infrakstruktur dddan Manufaktur, Jurnal Manajemen, Vol. 8 No. 1, 2018, h. 107-108.
[11] Ari Pani Desvina dan Maryam Julliana D, Pemodelan Pencemaran Udara menggunakan Metode Vector Autoregressive (VAR) di Provinsi Riau, Jurnal Sains Teknologi dan industri, Vol. 13 No. 2, 2016, h. 161.
[12] Ari Pani Desvin dan Ratnawati, Penerapan ModelVector Autoregressive (VAR) Untuk Peramalan Curah Hujan Kota Pekanbaru, Jurnal Sains Teknologi dan Industri, Vol. 11, No. 2, 2014, h. 153.
[13] Di Asih I Maruddani dan Tutut Dewi Astuti, Uji Kausalitas Granger Pada Model Harga Saham PT. Indofood Sukses Makmur Indonesia Tbk. Jurnal Sains & Matematika, Vol. 17 No.2, 2009, h. 69-70.
[14] Tjok Gde Sahityahutti Ranangga, dkk., Metode Vector Autoregressive (VAR) dalam Peramalan Jumlah Wisatawan Mancanegara ke Bali, Jurnal Matematika, Vol. 7, No.2, 2018, h.159.
[15] Gaustama Putra dan A.R Maulud, Peramalan Kebutuhan Batubara menggunakan Metode Single Exponential Smoothing di PT. Solusi Bangun Andalas, Jurnal Optimalisasi, Vol. 6 No. 2, 2020, h. 133-134.
Copyright (c) 2024 Jurnal MSA ( Matematika dan Statistika serta Aplikasinya)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.