Determining Surface Tension of Liquids: Molecular Mechanisms and Practical Applications
Abstract
This study aims to explain the molecular mechanisms controlling the surface tension of liquids and determine the magnitude of the surface tension of liquids. The research was conducted through laboratory experiments with variations in temperature and the addition of surfactants. Data was collected by dipping the device into soapy water and measuring the changes in string tension before and after immersion. The results showed that the surface tension of hot soapy water is lower than that of cold soapy water. This reduction in surface tension is due to the increased kinetic energy of molecules at higher temperatures. These findings are relevant in various scientific and industrial applications, including capillarity in plants, industrial cleaning, and understanding the hydrological cycle. This research provides a deeper understanding of surface tension and its implications in everyday life.
Downloads
References
Ali, M., & Ikbal, M. S. (2023). DETERMINING THE SURFACE TENSION OF A LIQUID AND THE DROP Determining The Surface Tension …. 11(1).
Aris, B., Mahardika, P. A., & Budi, A. (2020). Pengaruh Fraksi Volum terhadap Waktu Gelembung Pecah pada Sabun Cuci Tangan ( Hand Wash ). 2019.
Aulia, N. R., Amanah, S., & Hidayah, N. (2024). Pembuktian Ayat – Ayat Al – Qur ’ an tentang Perbedaan Warna Air Laut Dalam Perspektif Fisika. 3(3), 522–539.
Butt, H. J., Graf, K., & Kappl, M. (2023). Physics and chemistry of interfaces. John Wiley & Sons.
Bzdek, B. R., Reid, J. P., Malila, J., & Prisle, N. L. (2020). The surface tension of surfactant-containing, finite volume droplets. Proceedings of the National Academy of Sciences, 117(15), 8335-8343.
Chatzigiannakis, E., Jaensson, N., & Vermant, J. (2021). Thin liquid films: Where hydrodynamics, capillarity, surface stresses and intermolecular forces meet. Current Opinion in Colloid & Interface Science, 53, 101441.
Davoodabadi, A., & Ghasemi, H. (2021). Evaporation in nano/molecular materials. Advances in Colloid and Interface Science, 290, 102385.
Golmaghani-Ebrahimi, E., Bagheri, A., & Fazli, M. (2020). The influence of temperature on surface concentration and interaction energy between components in binary liquid systems. The Journal of Chemical Thermodynamics, 146, 106105.
Guo, S., Ma, M., Wang, Y., Wang, J., Jiang, Y., Duan, R., ... & Liu, Z. (2024). Spatially Confined Microcells: A Path toward TMD Catalyst Design. Chemical Reviews.
Gupta, J., Gupta, R., & Roy, S. (2022). Green technologies: smart approaches for extraction of phytobioactive constituents using hydrotropic solvents. European Journal of Molecular & Clinical Medicine, 9(7).
Hardani, S. P., Idawati, S., Rahim, A., Ningrum, D. M., Ghozaly, M. R., Ulya, T., Dewi, I. K., & Pertiwi, A. D. (2022). Buku Ajar Farmasi Fisika. Samudra Biru.
Hou, B., Wu, C., Li, X., Huang, J., & Chen, M. (2021). Contact line-based model for the Cassie-Wenzel transition of a sessile droplet on the hydrophobic micropillar-structured surfaces. Applied Surface Science, 542, 148611.
Irfan, M., & Supriyatna, D. (2024). KONSEP DASAR MEKANIKA FLUIDA. 3(2). Khaira, T. (2023). ALAM SEKITAR BERBANTUAN VIRTUAL LAB PADA MATERI FLUIDA STATIS TINGKAT SMA / MA.
Jabbarzadeh, A. (2024). Effect of molecular branching and surface wettability on solid-liquid surface tension and line-tension of liquid alkane surface nanodroplets. Journal of Colloid and Interface Science, 666, 355-370.
Jiang, Y., & Drelich, J. W. (2022). Fluid droplet spreading and adhesion studied with a microbalance: a review. Surface Innovations, 12(1-2), 4-17. https://doi.org/10.1680/jsuin.22.01050
Khotimah, K., Supriyanto, S., Natalisanto, A. I., & Asmaidi, A. (2022). Progressive Physics Journal. 3, 170–178.
Kováts, P., Thévenin, D., & Zähringer, K. (2020). Influence of viscosity and surface tension on bubble dynamics and mass transfer in a model bubble column. International Journal of Multiphase Flow, 123, 103174.
Langevin, D. (2021). Light scattering by liquid surfaces, new developments. Advances in Colloid and Interface Science, 289, 102368. https://doi.org/10.1016/j.cis.2021.102368
Leksono, E. B., Hanif, A., & Rakhmadi, F. A. (n.d.). Aplikasi Alat Ukur Tegangan Permukaan Untuk Membedakan Air Tercemar Limbah Pabrik Gula dan Air Yang Bersih Dari Limbah Pabrik Gula. November 2019, 15–19.
Liao, J., Majidi, C., & Sitti, M. (2023). Liquid metal actuators: a comparative analysis of surface tension controlled actuation. Advanced Materials, 2300560. https://doi.org/10.1002/adma.202300560
Mandasari, R. (2020). Pengembangan modul berbasis isu-isu kontekstual pada konsep fluida statis.
Mathijssen, A. J., Lisicki, M., Prakash, V. N., & Mossige, E. J. (2023). Culinary fluid mechanics and other currents in food science. Reviews of Modern Physics, 95(2), 025004. https://doi.org/10.1103/RevModPhys.95.025004
Nguyen, H. N. G., Zhao, C. F., Millet, O., & Gagneux, G. (2020). An original method for measuring liquid surface tension from capillary bridges between two equal-sized spherical particles. Powder technology, 363, 349-359.
Pashley, R. M., & Karaman, M. E. (2021). Applied colloid and surface chemistry. John Wiley & Sons.
Patiño-Camino, R., Cova-Bonillo, A., Lapuerta, M., Rodríguez-Fernández, J., & Segade, L. (2022). Surface tension of diesel-alcohol blends: Selection among fundamental and empirical models. Fluid Phase Equilibria, 555, 113363.
Peng, M., Duignan, T. T., Nguyen, C. V., & Nguyen, A. V. (2021). From surface tension to molecular distribution: modeling surfactant adsorption at the air–water interface. Langmuir, 37(7), 2237-2255.
Pradiani, W., Zulhaini, R., & Prianto, A. H. (2022). Pengaruh tegangan permukaan dan potensial permukaan terhadap kestabilan emulsi krim minyak biji mimba anti nyamuk aedes aegypti. 7(1), 41–47.
Qazi, M. J., Schlegel, S. J., Backus, E. H., Bonn, M., Bonn, D., & Shahidzadeh, N. (2020). Dynamic surface tension of surfactants in the presence of high salt concentrations. Langmuir, 36(27), 7956-7964.
Rieger, M. M. (2020). Surfactants. In Pharmaceutical Dosage Forms (pp. 211-286). CRC Press.
Sains, F., Teknologi, D. A. N., Islam, U., & Semarang, N. W. (2021). PENGEMBANGAN MEDIA PEMBELAJARAN MOBILE LEARNING BERBASIS ANDROID PADA MATERI FLUIDA STATIS MENGGUNAKAN.
Saputro, I. N., Nur, A., Hapsari, F., Syahfa, A. N., Palupi, G. R., Jodyastama, I., Astuti, N. D., Arli, R., Wisanggeni, S., Wulandari, A., Azizah, S. M., Karimah, U., & Khasanah, N. (2023). Pembelajaran IPA menggunakan FUNEX ( Fun Sains Experiment ) di SDN 01 Karakan Kecamatan Weru Kabupaten Sukoharjo. 12(1), 91–96.
Senja, R. G. S., & Supriyatna, D. (n.d.). KONSEP DASAR MEKANIKA FLUIDA DAN KARAKTERISTIKNYA.
Schiltz, A. (2024). Analysis of surface tension in terms of energy gradient per unit volume and force gradient per unit area.
Setiawan, A., & Irawan, B. P. (2023). Penerapan Aplikasi Fluida Statis Pada Mesin Capping Di Peternakan Industri Madu Ratim. 10(2).
Sulaiman, N., Faiqoh, E., & Syahrir, M. (2021). Jurnal Litbang Industri Utilization of red spinach leaf type as raw material for making natural stamp ink. 27–32.
Syafina, K., Putri, R. A., Adibatuzzakiyah, G. W., Saleha, N., & Lestari, D. (n.d.). FENOMENA AIR LAUT DAN AIR TAWAR BERDASARKAN SURAH. 417–428.
Varghese, B., Suresh, H., & Sathian, S. P. (2024). Are Surface Nanobubbles Stabilized by Hydrophobic Attraction? Insights from Molecular Dynamics and Potential of Mean Force Simulations. The Journal of Physical Chemistry C.
Yanti, D., Hidayat, M. R., & Sari, N. I. (2023). Fenomena Dua Air Laut yang Tidak Menyatu Menurut Pandangan Al-Qur’an dan Sains. 1, 201–215.
Zhu, S., Xie, K., Lin, Q., Cao, R., & Qiu, F. (2023). Experimental determination of surface energy for high-energy surface: A review. Advances in Colloid and Interface Science, 315, 102905. https://doi.org/10.1016/j.cis.2023
Copyright (c) 2025 luthfiah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Authors submitting a manuscript do so on the understanding that if accepted Al-Khazini:Jurnal Pendidikan Fisika for publication, copyright publishing of the article shall be assigned/transferred to Physics Education Department, UIN Alauddin Makassar as Publisher of the journal. Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement'. An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement' form by the online version of this agreement.
Al-Khazini:Jurnal Pendidikan Fisika and Physics Education Department, UIN Alauddin Makassar, , and Physics Society of Indonesia as the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Al-Khazini:Jurnal Pendidikan Fisika are the sole and exclusive responsibility of their respective authors and advertisers.
The copyright form should be signed electronically and send to the Editorial Office in the form of the original e-mail: [email protected]