Determining Surface Tension of Liquids: Molecular Mechanisms and Practical Applications

  • luthfiah universitas islam negeri sunan gunung djati bandung
    (ID)
Kata Kunci: Kata Kunci: Tegangan Permukaan Zat Cair Molekuler Surfaktan Eksperimen Laboratorium

Abstrak

Penelitian ini bertujuan untuk menjelaskan mekanisme molekuler yang mengendalikan tegangan permukaan zat cair dan menentukan besar tegangan permukaan zat cair. Penelitian dilakukan melalui eksperimen laboratorium dengan variasi suhu dan penambahan surfaktan. Data diambil dengan mencelupkan alat ke dalam air bersabun dan mengukur perubahan tegangan tali sebelum dan sesudah pencelupan. Hasil eksperimen menunjukkan bahwa tegangan permukaan air sabun panas lebih rendah daripada air sabun dingin. Penurunan tegangan permukaan ini disebabkan oleh peningkatan energi kinetik molekul pada suhu yang lebih tinggi. Temuan ini relevan dalam berbagai aplikasi ilmiah dan industri, termasuk kapilaritas pada tumbuhan, pembersihan industri, dan pemahaman siklus hidrologi. Penelitian ini memberikan pemahaman yang lebih dalam tentang tegangan permukaan dan implikasinya dalam kehidupan sehari-hari

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Referensi

Abbott, J. R., Zhu, H., & Ambrose, A. E. (2020). Impact and adhesion of surfactant-amended water droplets on leaf surfaces related to roughness. Transactions of the ASABE, 63(6), 1855-1868.
Ali, M., & Ikbal, M. S. (2023). DETERMINING THE SURFACE TENSION OF A LIQUID AND THE DROP Determining The Surface Tension …. 11(1).
Aris, B., Mahardika, P. A., & Budi, A. (2020). Pengaruh Fraksi Volum terhadap Waktu Gelembung Pecah pada Sabun Cuci Tangan ( Hand Wash ). 2019.
Aulia, N. R., Amanah, S., & Hidayah, N. (2024). Pembuktian Ayat – Ayat Al – Qur ’ an tentang Perbedaan Warna Air Laut Dalam Perspektif Fisika. 3(3), 522–539.
Butt, H. J., Graf, K., & Kappl, M. (2023). Physics and chemistry of interfaces. John Wiley & Sons.
Bzdek, B. R., Reid, J. P., Malila, J., & Prisle, N. L. (2020). The surface tension of surfactant-containing, finite volume droplets. Proceedings of the National Academy of Sciences, 117(15), 8335-8343.
Chatzigiannakis, E., Jaensson, N., & Vermant, J. (2021). Thin liquid films: Where hydrodynamics, capillarity, surface stresses and intermolecular forces meet. Current Opinion in Colloid & Interface Science, 53, 101441.
Davoodabadi, A., & Ghasemi, H. (2021). Evaporation in nano/molecular materials. Advances in Colloid and Interface Science, 290, 102385.
Golmaghani-Ebrahimi, E., Bagheri, A., & Fazli, M. (2020). The influence of temperature on surface concentration and interaction energy between components in binary liquid systems. The Journal of Chemical Thermodynamics, 146, 106105.
Guo, S., Ma, M., Wang, Y., Wang, J., Jiang, Y., Duan, R., ... & Liu, Z. (2024). Spatially Confined Microcells: A Path toward TMD Catalyst Design. Chemical Reviews.
Gupta, J., Gupta, R., & Roy, S. (2022). Green technologies: smart approaches for extraction of phytobioactive constituents using hydrotropic solvents. European Journal of Molecular & Clinical Medicine, 9(7).
Hardani, S. P., Idawati, S., Rahim, A., Ningrum, D. M., Ghozaly, M. R., Ulya, T., Dewi, I. K., & Pertiwi, A. D. (2022). Buku Ajar Farmasi Fisika. Samudra Biru.
Hou, B., Wu, C., Li, X., Huang, J., & Chen, M. (2021). Contact line-based model for the Cassie-Wenzel transition of a sessile droplet on the hydrophobic micropillar-structured surfaces. Applied Surface Science, 542, 148611.
Irfan, M., & Supriyatna, D. (2024). KONSEP DASAR MEKANIKA FLUIDA. 3(2). Khaira, T. (2023). ALAM SEKITAR BERBANTUAN VIRTUAL LAB PADA MATERI FLUIDA STATIS TINGKAT SMA / MA.
Jabbarzadeh, A. (2024). Effect of molecular branching and surface wettability on solid-liquid surface tension and line-tension of liquid alkane surface nanodroplets. Journal of Colloid and Interface Science, 666, 355-370.
Jiang, Y., & Drelich, J. W. (2022). Fluid droplet spreading and adhesion studied with a microbalance: a review. Surface Innovations, 12(1-2), 4-17. https://doi.org/10.1680/jsuin.22.01050
Khotimah, K., Supriyanto, S., Natalisanto, A. I., & Asmaidi, A. (2022). Progressive Physics Journal. 3, 170–178.
Kováts, P., Thévenin, D., & Zähringer, K. (2020). Influence of viscosity and surface tension on bubble dynamics and mass transfer in a model bubble column. International Journal of Multiphase Flow, 123, 103174.
Langevin, D. (2021). Light scattering by liquid surfaces, new developments. Advances in Colloid and Interface Science, 289, 102368. https://doi.org/10.1016/j.cis.2021.102368
Leksono, E. B., Hanif, A., & Rakhmadi, F. A. (n.d.). Aplikasi Alat Ukur Tegangan Permukaan Untuk Membedakan Air Tercemar Limbah Pabrik Gula dan Air Yang Bersih Dari Limbah Pabrik Gula. November 2019, 15–19.
Liao, J., Majidi, C., & Sitti, M. (2023). Liquid metal actuators: a comparative analysis of surface tension controlled actuation. Advanced Materials, 2300560. https://doi.org/10.1002/adma.202300560
Mandasari, R. (2020). Pengembangan modul berbasis isu-isu kontekstual pada konsep fluida statis.
Mathijssen, A. J., Lisicki, M., Prakash, V. N., & Mossige, E. J. (2023). Culinary fluid mechanics and other currents in food science. Reviews of Modern Physics, 95(2), 025004. https://doi.org/10.1103/RevModPhys.95.025004
Nguyen, H. N. G., Zhao, C. F., Millet, O., & Gagneux, G. (2020). An original method for measuring liquid surface tension from capillary bridges between two equal-sized spherical particles. Powder technology, 363, 349-359.
Pashley, R. M., & Karaman, M. E. (2021). Applied colloid and surface chemistry. John Wiley & Sons.

Patiño-Camino, R., Cova-Bonillo, A., Lapuerta, M., Rodríguez-Fernández, J., & Segade, L. (2022). Surface tension of diesel-alcohol blends: Selection among fundamental and empirical models. Fluid Phase Equilibria, 555, 113363.
Peng, M., Duignan, T. T., Nguyen, C. V., & Nguyen, A. V. (2021). From surface tension to molecular distribution: modeling surfactant adsorption at the air–water interface. Langmuir, 37(7), 2237-2255.
Pradiani, W., Zulhaini, R., & Prianto, A. H. (2022). Pengaruh tegangan permukaan dan potensial permukaan terhadap kestabilan emulsi krim minyak biji mimba anti nyamuk aedes aegypti. 7(1), 41–47.
Qazi, M. J., Schlegel, S. J., Backus, E. H., Bonn, M., Bonn, D., & Shahidzadeh, N. (2020). Dynamic surface tension of surfactants in the presence of high salt concentrations. Langmuir, 36(27), 7956-7964.
Rieger, M. M. (2020). Surfactants. In Pharmaceutical Dosage Forms (pp. 211-286). CRC Press.
Sains, F., Teknologi, D. A. N., Islam, U., & Semarang, N. W. (2021). PENGEMBANGAN MEDIA PEMBELAJARAN MOBILE LEARNING BERBASIS ANDROID PADA MATERI FLUIDA STATIS MENGGUNAKAN.
Saputro, I. N., Nur, A., Hapsari, F., Syahfa, A. N., Palupi, G. R., Jodyastama, I., Astuti, N. D., Arli, R., Wisanggeni, S., Wulandari, A., Azizah, S. M., Karimah, U., & Khasanah, N. (2023). Pembelajaran IPA menggunakan FUNEX ( Fun Sains Experiment ) di SDN 01 Karakan Kecamatan Weru Kabupaten Sukoharjo. 12(1), 91–96.
Senja, R. G. S., & Supriyatna, D. (n.d.). KONSEP DASAR MEKANIKA FLUIDA DAN KARAKTERISTIKNYA.
Schiltz, A. (2024). Analysis of surface tension in terms of energy gradient per unit volume and force gradient per unit area.
Setiawan, A., & Irawan, B. P. (2023). Penerapan Aplikasi Fluida Statis Pada Mesin Capping Di Peternakan Industri Madu Ratim. 10(2).
Sulaiman, N., Faiqoh, E., & Syahrir, M. (2021). Jurnal Litbang Industri Utilization of red spinach leaf type as raw material for making natural stamp ink. 27–32.
Syafina, K., Putri, R. A., Adibatuzzakiyah, G. W., Saleha, N., & Lestari, D. (n.d.). FENOMENA AIR LAUT DAN AIR TAWAR BERDASARKAN SURAH. 417–428.
Varghese, B., Suresh, H., & Sathian, S. P. (2024). Are Surface Nanobubbles Stabilized by Hydrophobic Attraction? Insights from Molecular Dynamics and Potential of Mean Force Simulations. The Journal of Physical Chemistry C.
Yanti, D., Hidayat, M. R., & Sari, N. I. (2023). Fenomena Dua Air Laut yang Tidak Menyatu Menurut Pandangan Al-Qur’an dan Sains. 1, 201–215.
Zhu, S., Xie, K., Lin, Q., Cao, R., & Qiu, F. (2023). Experimental determination of surface energy for high-energy surface: A review. Advances in Colloid and Interface Science, 315, 102905. https://doi.org/10.1016/j.cis.2023
Diterbitkan
2025-01-20
Bagian
Artikel
Abstrak viewed = 2 times